Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 205-209    https://doi.org/10.1007/s12200-008-0060-y
Research Article
Analysis of flash lamp structure using Monte Carlo photon tracing method
Liefeng ZHAO(), Huajun FENG, Zhihai XU
State Key Lab of Modern Optical Instrumentation, Zhejiang University
 Download: PDF(174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By analyzing the flash lamp structure, better illumination distributions in the lamp's field of view can be obtained. Instead of geometrical optical approaches, the Monte Carlo photon tracing method was used here to trace the photon tracks in a three-dimensional space. The models of elemental structures in a camera flash lamp, such as the flash tube, reflector and focus lens, were set up by introducing the cosinusoidal random number and other mathematical methods. Initially, the single photon was traced in the flash lamp by using the Monte Carlo method to simulate various photon tracks. A large sum of photons was then generated to simulate the real situation in the flash lamp. Finally, a group of structural parameters was applied to verify the simulative computer program. The output light intensity distributions at different angles of view in the orthogonal directions meet the ISO standards and are very close to the measured ones. Hence, the Monte Carlo photon tracing method in the design of flash lamps has been proven to be applicable and useful.

Keywords luminescence      photon tracing      Monte Carlo method      flash lamp      model     
Corresponding Author(s): ZHAO Liefeng,Email:liefzhao@gmail.com   
Issue Date: 05 September 2009
 Cite this article:   
Liefeng ZHAO,Huajun FENG,Zhihai XU. Analysis of flash lamp structure using Monte Carlo photon tracing method[J]. Front Optoelec Chin, 2008, 1(3-4): 205-209.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0060-y
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/205
Fig0  Schematics of a typical flash lamp structure.(a) Perspective; (b) - sectional view; (c) - sectional view
1 FengH J. A design of condenser lens of zoom flash. Optical Instruments , 1996, 18(5): 12–18 (in Chinese)
2 YeT F, FengH J, XuZ H. A design for flash on ray-tracing. Optical Instruments , 2005, 27(3): 60–64 (in Chinese)
3 ZhuZ C. The design research of auto-winding/auto-rewinding system and zoom flashlight. Dissertation for the Master Degree . Hangzhou: Zhejiang University, 1989, 88–109 (in Chinese)
4 WangJ G, WangG Y, XuZ Z. Monte-Carlo simulations for light propagation in striated scattering medium. Acta Optica Sinica , 2000, 20(3): 346–350 (in Chinese)
5 ChenX D, YuD Y, XieH B, . Reconstruction of tissue autofluorescence spectra by Monte-Carlo modeling. Acta Optica Sinica , 2003, 23(5): 612–615 (in Chinese)
6 LeeS J. Design rules for high-brightness light-emitting diodes grown on GaAs substrate. Japanese Journal of Applied Physics , 1998, 37(2): 509–516
doi: 10.1143/JJAP.37.509
7 LeeS J. Analysis of InGaN high-brightness light-emitting diodes. Japanese Journal of Applied Physics , 1998, 37(11): 5990–5993
doi: 10.1143/JJAP.37.5990
8 LeeS J. Light-emitting diode lamp design by Monte Carlo photon simulation. In: Proceedings of SPIE , 2001, 4278: 99–108
doi: 10.1117/12.426838
9 LeeS J. Analysis of light-emitting diodes by Monte Carlo photon simulation. Applied Optics , 2001, 40(9): 1427–1437
doi: 10.1364/AO.40.001427
10 YuY, YanJ. Monte Carlo simulation and experimental analysis on optical encapsulated structure of light emitting diode. Chinese Journal of Semiconductors , 2004, 25(12): 1685–1689 (in Chinese)
11 GaoX, BotezD, KnezevicI. X-valley leakage in GaAs/AlGaAs quantum cascade lasers. Applied Physics Letters , 2006, 89(19): 191119
doi: 10.1063/1.2387485
12 GaoX, BotezD, KnezevicI. X-valley leakage in GaAs-based midinfrared quantum cascade lasers: a Monte Carlo study. Journal of Applied Physics , 2007, 101(6): 063101
doi: 10.1063/1.2711153
13 GaoX, D'SouzaM, BotezD, . Design and optimization of a GaAs-based sub-7-μm quantum cascade laser based on multivalley Monte Carlo simulation. In: Proceedings of Conference on NUSOD'07 , 2007: 17–18
14 LiR Y, QinJ Y, GuT K, . Structure of liquid Al80Mn20 alloy by reverse Monte Carlo simulation. Journal of Non-Cystalline Solids , 2008, 354(15): 1736–1739
doi: 10.1016/j.jnoncrysol.2007.08.086
15 PatraC. Structure of polymer solutions at interfaces: a Monte Carlo simulation study. Molecular Physics , 2007, 105(17): 2419–2422
doi: 10.1080/00268970701684616
16 GerebenO, JovariP, TemleitnerL, . A new version of the RMC ++ Reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses. Journal of Optoelectronics and Advanced Materials , 2007, 9(10): 3021–3027
17 YanZ Z. Linear pulsed xenon lamps and its development. Vacuum Electronics , 1997, 2: 36–41 (in Chinese)
18 WuJ Z, YeG R. Measurement of Optical Radiation. Beijing: China Machine Press, 1989, 56 (in Chinese)
[1] Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Front. Optoelectron., 2020, 13(2): 156-187.
[2] Neha JAIN, O. P. SINHA, Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
[3] Xinglu QIAN, Jun ZOU, Mingming SHI, Bobo YANG, Yang LI, Ziming WANG, Yiming LIU, Zizhuan LIU, Fei ZHENG. Development of optical-thermal coupled model for phosphor-converted LEDs[J]. Front. Optoelectron., 2019, 12(3): 249-267.
[4] Ruiqing HU, Yifeng SHI, Haifeng BAO. Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates[J]. Front. Optoelectron., 2018, 11(4): 385-393.
[5] Tao Pan, Bingren Yan, Jiemei Chen, Lijun Yao. Discrete combination method based on equidistant wavelength screening and its application to near-infrared analysis of hemoglobin[J]. Front. Optoelectron., 2018, 11(3): 296-305.
[6] Ayad KAKEI, Jayantha A. EPAARACHCHI. Use of fiber Bragg grating sensors for monitoring delamination damage propagation in glass-fiber reinforced composite structures[J]. Front. Optoelectron., 2018, 11(1): 60-68.
[7] Yu HAN, Yubin WU, Danhua CAO, Peng YUN. Defect detection on button surfaces with the weighted least-squares model[J]. Front. Optoelectron., 2017, 10(2): 151-159.
[8] Heng ZHAO,Bo LI,Wenjin WANG,Yi HU,Youqin WANG. Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser[J]. Front. Optoelectron., 2016, 9(4): 592-598.
[9] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[10] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[11] Hequn WANG,Jing PEI,Longfa PAN. Optimized multi-dimensional optical storage reading strategy[J]. Front. Optoelectron., 2014, 7(4): 467-474.
[12] Yaojing ZHANG, Lu SUN, Ying CHANG, Wenbin LI, Chun JIANG. Multiband infrared luminescence of Er3+-Ho3+-Nd3+/Tm3+-codoped telluride glasses[J]. Front Optoelec, 2014, 7(1): 74-76.
[13] Mohammad H. AKBARI, Mohsen JALALI. Position dependent circuit model for thin avalanche photodiodes[J]. Front Optoelec, 2013, 6(2): 194-198.
[14] Zhen WANG. Recent advances of optical imaging in animal stroke model[J]. Front Optoelec, 2013, 6(2): 134-145.
[15] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed