Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 274-278    https://doi.org/10.1007/s12200-008-0062-9
Research article
Daytime observation technology of a lidar using an atomic filter
Xuewu CHENG, Shunsheng GONG(), Faquan LI, Yang DAI, Juan SONG, Jiamin WANG, Fengyan LI
State Key Laboratory of Magnetic Resonance and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
 Download: PDF(277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the dual-wavelength high altitude detecting lidar we developed, daytime observation capability was realized in its sodium fluorescence channel by employing a Na (sodium) atomic filter and other relevant technologies. Because of the very narrow passband and very high out-of-band suppression of the Na atomic filter, the lidar echo at an 80–110 km altitude can be obtained even at noontime when background light from the sun is very strong. The capability for a 24-h continuous observation of the lidar system has been demonstrated by the preliminary observation result. This development makes the constant detection and investigation of high altitude atmosphere over the country possible.

Keywords lidar      daytime observation      Na (sodium) fluorescence      atomic filter      atomic frequency stabilization     
Corresponding Author(s): GONG Shunsheng,Email:gongss@wipm.ac.cn   
Issue Date: 05 September 2009
 Cite this article:   
Xuewu CHENG,Shunsheng GONG,Faquan LI, et al. Daytime observation technology of a lidar using an atomic filter[J]. Front Optoelec Chin, 2008, 1(3-4): 274-278.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0062-9
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/274
Fig0  Schematic diagram of daytime detection lidar
1 ChengX W, SongJ, LiF Q, . Dual-wavelength high altitude detecting lidar technology. Chinese Journal of Lasers , 2006, 33(5): 601–606 (in Chinese)
2 ChenH, WhiteM A, KruegerD A, . Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver. Optics Letters , 1996, 21(15): 1093–1095
doi: 10.1364/OL.21.001093
3 Fricke-BegemannC, AlpersM, HoffnerJ. Daylight rejection with a new receiver for potassium resonance temperature lidars. Optics Letters , 2002, 27(21): 1932–1934
doi: 10.1364/OL.27.001932
4 GongS S, ZengX Z, XueX J, . First time observation of sodium layer over Wuhan, China by sodium florescence lidar. Science in China , 1997, 40(11): 1228–1235
5 AiY, ZhangX X, LuS, . Characteristics of the sodium layers observed by the laser radar in Wuhan. Chinese Journal of Lasers , 1998, A25(7): 653–656 (in Chinese)
6 ChengX W, LiF Q, LinZ X, . Properties and applications of Faraday anomalous dispersion optical filter. Optics & Optoelectronic Technology , 2003, 1(1): 41–43 (in Chinese)
7 ChenH, SheC Y, SearcyP, . Sodium-vapor dispersive Faraday filter. Optics Letters , 1993, 18(12): 1019–1021
doi: 10.1364/OL.18.001019
8 HuZ L, SunX P, LiuY P, . Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line. Optics Communications , 1998, 156(4–6): 289–293
doi: 10.1016/S0030-4018(98)00461-1
9 ZhangY D, JiangX, BiY, . Numerical calculation of sodium Faraday anomalou dispersion optical filter. Journal of Harbin Institute of Technology , 1999, 31(5): 18–21 (in Chinese)
10 ChengX W, LiF Q, SongJ, . Atomic and molecular frequency stabilization of pulse dye laser and its method. China Patent, 200510019816.X (in Chinese)
11 LiF Q, WangY P, ChengX W, . Faraday anomalous dispersion optical filter atomic frequency-stabilized semiconductor laser through optical feedback. Chinese Journal of Lasers , 2005, 32(10): 1317–1320 (in Chinese)
[1] Lei LI, Changming ZHAO, Suhui YANG. Laser detection by electronic instead of optical heterodyne using a two-frequency laser[J]. Front Optoelec Chin, 2008, 1(3-4): 237-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed