Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 329-335    https://doi.org/10.1007/s12200-008-0081-6
Research article
Theoretical and experimental research on Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers
Shufeng LI1(), Chengren LI1,2, Changlie SONG1
1. Physics Department, Dalian University of Technology; 2. Physics Department, Liaoning Normal University
 Download: PDF(238 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rate equations of Er-doped and Yb-Er co-doped systems pumped at 0.98 μm are presented, with consideration for the upconversion mechanisms such as cooperative upconversion, cross relaxation, and excited state absorption. A multi-theoretical model is founded to analyze the gain characteristics of Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers by using rate equations, a two-dimension waveguide finite element model and propagation equations with forward and backward amplified spontaneous emission. The dependence of the gain on amplifier length, pump power and doping concentration is obtained. The optimum design curve is given for designing waveguide amplifiers. The new theory is used to analyze the gain performance of a practical Yb-Er co-doped Al2O3 waveguide amplifier, and the analyzed results are in accordance with the experimental data.

Keywords integrated optics      Er-doped Al2O3 waveguide amplifier (EDAWA)      Yb-Er co-doped Al2O3 waveguide amplifier (YEDAWA)      multi-theoretical model, net gain     
Corresponding Author(s): LI Shufeng,Email:sf.lee@163.com   
Issue Date: 05 September 2009
 Cite this article:   
Shufeng LI,Chengren LI,Changlie SONG. Theoretical and experimental research on Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers[J]. Front Optoelec Chin, 2008, 1(3-4): 329-335.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0081-6
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/329
Fig0  Rib waveguide( = 1.64, = 1.51, = 1, = 1 μm, = 3 μm, = 0.8 μm)
parametervalue
pump cross-section (λp = 0.98 μm)absorptionσEr-a13 = 1.7 × 10-21 cm2σYb-a78 = 11.7 × 10-21 cm2
emissionσEr-e31 = 0 cm2σYb-e87 = 11.6 × 10-21 cm2
signal cross-section (λs = 1.53 μm)absorptionσEr-a12 = 5.7 × 10-21 cm2
emissionσEr-e21 = 5.7 × 10-21 cm2
excited state absorption cross-sectionσESA = 0.8 × 10-21 cm2
excited state lifetimeτ2 = 7.8 msτ3 = 30 μsτ4 = 1.0 nsτ5 = 7.0 μsτ6 = 20 nsτ8 = 1.1 ms
upconversion coefficient (assuming a linearly increasing function of Er concentration)NEr = 2.7 × 1020 cm-3NEr = 4.4 × 1019 cm-3C2 = C3 = C14 = 4.1 × 10-18 cm3/sC2 = C3 = C14 = 3.5 × 10-18 cm3/s
energy transfer coefficientKtr18 = 4.0 × 10-17 cm3/s
Tab0  Parameters of Yb-Erco-doped AlO film
1 van den HovenG N, SnoeksE, PolmanA, . Upconversion in Er-implanted Al2O3 waveguides. Journal of Applied Physics , 1996, 79(3): 1258–1266
doi: 10.1063/1.361020
2 KozaneckiA, SealyB J, HomewoosK. Excitation of Er3+ emission in Er, Yb co-doped thin silica films. Journal of Alloys and Compounds , 2000, 300–301: 61–64
doi: 10.1016/S0925-8388(99)00713-6
3 PolmanA. Erbium-doped planar optical amplifiers. In: Proceeding of 10th European Conference on Integrated Optics (ECIO'01) , 2001, 75–78
4 ZhangLong, LinFengying, QiChanghong, . High erbium-doped glasses for waveguide amplifiers at 1.53 μm. Acta Optica Sinica , 2000, 20(12): 1688–1693 (in Chinese)
5 ChengHaiyan, DaiJizhi, YangYapei, . Er3+, Yb3+ codoped phosphate glass channel waveguide amplifiers. Acta Optica Sinica , 2003, 23(7): 815–818 (in Chinese)
6 van den HovenG N, Van der ElskenJ A, PolmanA, . Absorption and emission cross sections of Er3+ in Al2O3 waveguides. Applied Optics , 1997, 36(15): 3338–3341
doi: 10.1364/AO.36.003338
7 GapontsevV P, MatitsinS M, IsineevA A, . Erbium glass lasers and their applications. Optics & Laser Technology , 1982, 14(4): 189–196
doi: 10.1016/0030-3992(82)90095-0
8 van den HovenG N, KoperR J I M, PolmanA, . Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon. Applied Physics Letters , 1996, 68(14): 1886–1888
doi: 10.1063/1.116283
9 StrohhoferC, PolmanA. Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides. Optical Materials , 2003, 21(4): 705–712
doi: 10.1016/S0925-3467(02)00056-3
10 ChryssouC E, Di PasqualeF, PittC W. Improved gain performance in Yb3+-sensitized Er3+-doped alumina (Al2O3) channel optical waveguide amplifiers. Journal of Lightwave Technology , 2001, 19(3): 345–349
doi: 10.1109/50.918886
11 Di PasqualeF, ZoboliM, FederighiM, . Finite-element modeling of silica waveguide amplifiers with high erbium concentration. IEEE Journal of Quantum Electronics , 1994, 30(5): 1277–1282
doi: 10.1109/3.303693
12 Lopez-BarberoA P, Hernandez-FigueroaH E, TorresP. Numerical modeling of multimode doped optical waveguides. Advances in Engineering Software , 2000, 31(4): 235–240
doi: 10.1016/S0965-9978(99)00055-1
13 LiShufeng, SongChanglie, LiChengren, . Theoretical model of Er-doped Al2O3 waveguide amplifier. Proceedings of SPIE , 2002, 4927: 263–270
doi: 10.1117/12.479544
14 LiShufeng, SongChanglie, LiChengren, . Coupling of fiber-waveguide amplifier. Proceedings of SPIE , 2004, 5644: 250–258
doi: 10.1117/12.574615
15 GilesC R, DesurvireE. Modeling erbium-doped fiber amplifiers. Journal of Lightwave Technology , 1991, 9(2): 271–283
doi: 10.1109/50.65886
16 GaoJingsheng, SongChanglie, LiChengren, . Photoluminescence of Yb3+/Er3+ co-doped Al2O3 film fabricated by medium frequency sputter. Journal of Optoelectronics?Laser , 2004, 15(10): 1162–1165 (in Chinese)
17 LiChengren, SongChanglie, LiShufeng, . Deposition of Er3+:Al2O3 films by closed-field unbalanced magnetron sputtering and photoluminescence characterization of the films. Proceedings of SPIE , 2002, 4905: 617–622
doi: 10.1117/12.480976
18 SongQi, SongChanglie, GaoJingsheng, . Yb3+/Er3+ co-doped Al2O3 optical waveguide fabricated by middle frequency sputter. Laser Technology , 2005, 29(4): 440–445 (in Chinese)
19 LiChengren, LiShufeng, SongQi, . Characteristics of net gain of Yb:Er co-doped Al2O3 waveguide amplifier. Acta Photonica Sinica , 2006, 35(5): 650–654 (in Chinese)
20 KikP G, PolmanA. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers. Journal of Applied Physics , 2003, 93(9): 5008–5012
doi: 10.1063/1.1565697
[1] Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Front. Optoelectron., 2020, 13(2): 129-138.
[2] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[3] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[4] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[5] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[6] Kambiz ABEDI, Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
[7] Kambiz ABEDI, Habib VAHIDI. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method[J]. Front Optoelec, 2013, 6(1): 108-113.
[8] Changkui HU, Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Front Optoelec Chin, 2009, 2(2): 187-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed