Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2009, Vol. 2 Issue (1) : 40-49    https://doi.org/10.1007/s12200-008-0082-5
Research articles
All-optical ultra-wideband pulse generation based on semiconductor optical amplifiers*
Jianji DONG , Xinliang ZHANG , Dexiu HUANG ,
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
 Download: PDF(334 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Several all-optical methods for ultra-wideband (UWB) pulse generation based on various nonlinearities of single semiconductor optical amplifiers (SOAs), namely cross phase modulation (XPM), cross gain modulation (XGM), and a hybrid of self phase modulation (SPM) and XGM, have been demonstrated. In the first method, UWB doublet pulses are realized with XPM. The input optical Gaussian pulse will be converted to two polarity-reversed monocycle pulses by a blue shifted and a red shifted optical bandpass filters respectively. These two monocycle pulses are then combined with proper time delay to generate two polarity-reversed doublet pulses. Second, two polarity-reversed monocycle pulses are obtained based on XGM of the SOA and group delay of the single mode fiber (SMF). In the scheme, two polarity-reversed Gaussian pulses are generated due to XGM, and then the mixed signal is converted to a monocycle shape due to the group delay of the SMF. Finally, we present UWB doublet generation based on SPM. The monocycle pulse is generated from a dark return-to-zero (RZ) signal and converted to a doublet pulse by injecting an additional probe signal with the SMF transmission. For the first time and to the best of our knowledge, we report that the generated doublet pulses are transmitted over 5?km SMF by proper dispersion compensation without distortion. The configuration of our all-optical methods is compact and simple. The feasibility to implement the pulse shape modulation and pulse polarity modulation is discussed.
Issue Date: 05 March 2009
 Cite this article:   
Jianji DONG,Xinliang ZHANG,Dexiu HUANG. All-optical ultra-wideband pulse generation based on semiconductor optical amplifiers*[J]. Front. Optoelectron., 2009, 2(1): 40-49.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0082-5
https://academic.hep.com.cn/foe/EN/Y2009/V2/I1/40
Aiello G R, Rogerson G D. Ultra-wideband wireless systems. IEEEMicrowave Magazine, 2003, 4(2): 36―47

doi: 10.1109/MMW.2003.1201597
Win M Z, Scholtz R A. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio forwireless multiple-access communications. IEEE Transactions on Communications, 2000, 48(4): 679―689

doi: 10.1109/26.843135
Porcino D, Hirt W. Ultra-widebandradio technology: potential and challenges ahead. IEEE Communications Magazine, 2003, 41(7): 66―74

doi: 10.1109/MCOM.2003.1215641
Chen X, Kiaei S. Monocycle shapes for ultrawideband system. In: Proceedings of IEEEInternational Symposium on Circuits and Systems, 2002, 1, I-597―I-600
Kim H, Park D, Joo Y. All-digital low-power CMOSpulse generator for UWB system. ElectronicsLetters, 2004, 40(24): 1534―1535

doi: 10.1049/el:20046923
Bachelet Y, Bourdel S, Gaubert J, Chalopin H. Fully integrated CMOS UWB pulse generator. Electronics Letters, 2006, 42(22): 1277―1278

doi: 10.1049/el:20062816
Zhu L, Sun S, Menzel W. Ultra-wideband (UWB) bandpassfilters using multiple-mode resonator. IEEE Microwave and Wireless Components Letters, 2005, 15(11): 796―798

doi: 10.1109/LMWC.2005.859011
Kim S, Jang H, Choi S, Kim Y, Jeong J. Performance evaluation for UWB signaltransmission with different modulation schemes in multi-cell environmentdistributed using ROF technology. In: Proceedingof IEEE International Workshop on Ultra Wideband Systems, 2004, 187―191
Lin W, Chen J. Implementationof a new ultrawide-band impulse system. IEEE Photonics Technology Letters, 2005, 17(11): 2418―2420

doi: 10.1109/LPT.2005.858155
Zeng F, Yao J. Ultrawidebandimpulse radio signal generation using a high-speed electrooptic phasemodulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photonics Technology Letters, 2006, 18(19): 2062―2064

doi: 10.1109/LPT.2006.883310
Kawanishi T, Sakamoto T, Izutsu M. Ultra-wide-band signal generation using high-speed opticalfrequency-shift-keying technique. In: 2004IEEE International Topical Meeting on Microwave Photonics, 2004, 48―51
Chen H, Chen M, Qiu C, Zhang J, Xie S. UWB monocyclepulse generation by optical polarisation time delay method. Electronics Letters, 2007, 43(9): 542―543

doi: 10.1049/el:20070042
Zeng F, Yao J. Anapproach to ultrawideband pulse generation and distribution over opticalfiber. IEEE Photonics Technology Letters, 2006, 18(7): 823―825

doi: 10.1109/LPT.2006.871844
Torres-Company V, Prince K, Monroy I T. Fiber transmission and generation of ultrawideband pulses by directcurrent modulation of semiconductor lasers and chirp-to-intensityconversion. Optics Letters, 2008, 33(3): 222―224

doi: 10.1364/OL.33.000222
Wang Q, Yao J. UWBdoublet generation using nonlinearly-biased electro-optic intensitymodulator. Electronics Letters, 2006, 42(22): 1304―1305

doi: 10.1049/el:20062134
Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P. Highorder ultrawideband pulse generation from NRZ-DPSK signals. In: Proceedings of Conference on Optical FiberCommunication/National Fiber Optic Engineers Conference (OFC/NFOEC2008). San Diego: IEEE, 2008, 1―3
Li J, Xu K, Fu S, Wu J, Lin J, Tang M, Shum P. Ultra-widebandpulse generation with flexible pulse shape and polarity control usinga Sagnac-interferometer-based intensity modulator. Optics Express, 2007, 15(26): 18156―18161

doi: 10.1364/OE.15.018156
Yao J, Zeng F, Wang Q. Photonic generation of ultrawidebandsignals. Journal of Lightwave Technology, 2007, 25(11): 3219―3235

doi: 10.1109/JLT.2007.906820
Wang Q, Zeng F, Blais S, Yao J. Optical ultrawideband monocycle pulse generation basedon cross-gain modulation in a semiconductor optical amplifier. Optics Letters, 2006, 31(21): 3083―3085

doi: 10.1364/OL.31.003083
Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P. Ultrawideband monocycle generation usingcross phase modulation in a semiconductor optical amplifier. Optics Letters, 2007, 32(10): 1223―1225

doi: 10.1364/OL.32.001223
Dong J J, Zhang X L, Xu J, Huang D X. All-optical ultrawideband monocycle generation utilizinggain saturation of a dark return-to-zero signal in a semiconductoroptical amplifier. Optics Letters, 2007, 32(15): 2158―2160

doi: 10.1364/OL.32.002158
Dong J J, Zhang X L, Xu J, Huang D X. Filter-free ultrawideband generation based on semiconductoroptical amplifier nonlinearities. OpticsCommunications, 2008, 281(4): 808―813

doi: 10.1016/j.optcom.2007.10.116
Zeng F, Wang Q, Yao J. All-optical UWB impulse generationbased on cross-phase modulation and frequency discrimination. Electronics Letters, 2007, 43(2): 121―122

doi: 10.1049/el:20073432
Wang C, Zeng F, Yao J. All-fiber ultrawideband pulsegeneration based on spectral shaping and dispersion-induced frequency-to-timeconversion. IEEE Photonics Technology Letters, 2007, 19(3): 137―139

doi: 10.1109/LPT.2006.888966
Wang Q, Yao J. Anelectrically switchable optical ultrawideband pulse generator. Journal of Lightwave Technology, 2007, 25(11): 3626―3633

doi: 10.1109/JLT.2007.907749
Lin W, Chen Y. Designof a new optical impulse radio system for ultra-wideband wirelesscommunications. IEEE Journal of SelectedTopics Quantum Electronics, 2006, 12(4): 882―887

doi: 10.1109/JSTQE.2006.876613
Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. High-speed all-optical differentiatorbased on a semiconductor optical amplifier and an optical filter. Optics Letters, 2007, 32(13): 1872―1874

doi: 10.1364/OL.32.001872
Agrawal G P, Olsson N A. Self-phase modulation and spectral broadening of optical pulses insemiconductor laser amplifiers. IEEE Journalof Quantum Electronics, 1989, 25(11): 2297―2306

doi: 10.1109/3.42059
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed