Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2009, Vol. 2 Issue (1) : 50-57    https://doi.org/10.1007/s12200-009-0002-3
Research articles
Progress of photonic crystal fibers and their applications
Wei CHEN 1, Jinyan LI 1, Peixiang LU 2,
1.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;National Key Laboratory for next Generation Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co., Ltd, Wuhan 430074, China; 2.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
 Download: PDF(235 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this article, the fabrication technologies of photonic crystal fibers (PCFs) and their applications at home and abroad were formulated at length, especially in fields such as large mode-area active PCFs, fiber lasers, birefringence fibers, sensors, high nonlinear PCFs, frequency transformation, dispersion compensation PCFs, wideband communication for optical network systems, and photonic band-gap fibers. Finally, according to the above analysis, the prospects and developing trends of PCFs were presented.
Issue Date: 05 March 2009
 Cite this article:   
Wei CHEN,Jinyan LI,Peixiang LU. Progress of photonic crystal fibers and their applications[J]. Front. Optoelectron., 2009, 2(1): 50-57.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0002-3
https://academic.hep.com.cn/foe/EN/Y2009/V2/I1/50
Kaiser P, Astle H W. Low-loss single-materialfibers made from pure fused silica. TheBell System Technical Journal, 1974, 53(6): 1021―1039
Birks T A, Roberts P J, Russell P S J, et al. Full 2-D photonicbandgaps in silica/air structures. ElectronicsLetters, 1995, 31(22): 1941―1943

doi: 10.1049/el:19951306
Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonicband gap guidance of light in air. Science, 1999, 285(5433): 1537―1539

doi: 10.1126/science.285.5433.1537
Knight J C, Birks T A, Russell P S J, et al. All-silica single-modeoptical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19):1547―1549

doi: 10.1364/OL.21.001547
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photoniccrystal fiber. Optics Letters, 1997, 22(13): 961―963

doi: 10.1364/OL.22.000961
Russell P S J. Photonic crystal fibers. Science, 2003, 299(5605): 358―362

doi: 10.1126/science.1079280
Kumar V V R K, George A K, Knight J C, et al. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20): 2641―2645
Ebendorff-Heidepriem H, Monro T, van Eijkelenborg M A, et al. Extruded polymer preforms forhigh-NA polymer microstructured fiber. In: Proceeding of OFC/NFOEC’2006, Anaheim. 2006, OThH4
Large M C J, Lwin R, Manos S, et al. Experimental studies of bandwidth behaviourin graded index microstructured polymer optical fibres.In: Proceeding of ECOC2007, Berlin. 2007, Session 4.1.3
Yao B, Ohsono K, Kurosawa Y, et al. Low-loss holey fiber. In: Proceedings of the 53rd IWCS/Focus, Pennsylvania. 2004, 135―139
Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructuredfibers. In: Proceedings of OFC/NFOEC’2006,Anaheim. 2006, OThH1
Roberts P, Couny F, Sabert H, et al. Ultimate low lossof hollow-core photonic crystal fibres. Optics Express, 2005, 13(1): 236―244

doi: 10.1364/OPEX.13.000236
Saitoh K, Tsuchida Y, Koshiba M, et al. Endlessly single-modeholey fibers: the influence of core design. Optics Express, 2005, 13(26): 10833―10839

doi: 10.1364/OPEX.13.010833
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photoniccrystal fiber. Optics Letters, 1997, 22(13): 961―963

doi: 10.1364/OL.22.000961
Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters, 2003, 28(20): 1879―1881

doi: 10.1364/OL.28.001879
Bonati G, Voelckel H, Gabler T, et al. 1.53 kW from a single Yb-doped photonic crystalfiber laser. In: Proceeding of PhotonicsWest: Late Breaking Developments. San Jose, 2005, Session 5709-2a
Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photoniccrystal fiber laser. Optics Express, 2003, 11(7): 818―823
Lavoute L, Roy P, Desfarges-Berthelemot A, et al. Design of microstructuredsingle-mode fiber combining large mode area and high rare earth ionconcentration. In: Proceeding of OFC2006,Anaheim. 2006, OFK1
François V, Aboutorabi S S. Fracture strength of air-cladmicrostructured fibers. In: Proceedingof OFC/NFOEC’2007. Anaheim. 2007, OThA4
Schreiber T, Limpert J, Liem A, et al. Thermo-optical analysis of air-clad photoniccrystal fiber lasers. In: Proceeding ofOFC’2004. Anaheim, 2004, TuA2
Limpert J, Liem A, Reich M, et al. Low-nonlinearitysingle-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Optics Express, 2004, 12(7):1313―1319

doi: 10.1364/OPEX.12.001313
Suzuki K, Kubota H, Kawanishi S, et al. Optical properties of a low-loss polarizationmaintaining photonic crystal fiber. OpticsExpress, 2001, 9(13): 676―680
Mitrofanov A V, Linik Y M, Buczynski R, et al. Highly birefringent silicate glass photonic crystal fiber with polarizationcontrolled frequency shifted output: a promising fiber light sourcefor nonlinear raman microspectroscopy. Optics Express, 2006, 14(22): 10645―10651

doi: 10.1364/OE.14.010645
Roberts P J, Williams D P, Sabert H, et al. Design of low lossand highly birefringent hollow core photonic crystal fiber. Opt Express, 2006, 14(16): 7329―7341

doi: 10.1364/OE.14.007329
Islam M N, Poole C D, Gordon J P. Soliton trapping in birefringentoptical fibers. Optics Letters, 1989, 14(18): 1011―1013

doi: 10.1364/OL.14.001011
Zhu Z M, Brown T. Experimentalstudies of polarization properties of supercontinua generated in abirefringent photonic crystal fiber. OpticsExpress, 2004, 12(5): 791―796

doi: 10.1364/OPEX.12.000791
Chen X, Li M J, Koh J, et al. Bending properties of hole-assisted single polarizationfibers. In: Proceedings of OFC/NFOEC’2007,Anaheim. 2007, OThA2
Dong X Y, Tam H Y, Shum P. Temperature-insensitive strain measurement with PM-PCFbased Sagnac interferometer. In: Proceedingsof ECOC’2007, Berlin. 2007, Session3.6.6
Delgado-Pinar M, Díez A, Torres-Peiró S, et al. Guidance and polarizationproperties of an anisotropic microstructured fibre. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.4
Foster M, Gaeta A. Ultra-lowthreshold supercontinuum generation in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137―3143

doi: 10.1364/OPEX.12.003137
Zhang R, Teipe J, Giessen H. Theoretical design of a liquid-corephotonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800―6812

doi: 10.1364/OE.14.006800
Takara H, Ohara T, Mori K, et al. More than 1000 channeloptical frequency chain generation from single supercontinuum sourcewith 12.5?GHz channel spacing. ElectronicsLetter, 2000, 36(25): 2089―2090

doi: 10.1049/el:20001461
Varshney S, Fujisawa T, Saitoh K, et al. Novel design ofinherently gain-flattened discrete highly nonlinear photonic crystalfiber Raman amplifier and dispersion compensation using a single pumpin C-band. Optics Express, 2005, 13(23): 9516―9526

doi: 10.1364/OPEX.13.009516
Ranka J K, Windeler R S, Stentz A J. Visible continuum generationin air-silica microstructure optical fibers with anomalous dispersionat 800?nm. Optics Letter, 2000, 25(1): 25―27

doi: 10.1364/OL.25.000025
Saitoh K, Florous N, Koshiba M. Ultra-flattened chromaticdispersion controllability using a defected core photonic crystalfiber with low confinement losses. OpticsExpress, 2005, 13(21): 8365―8371

doi: 10.1364/OPEX.13.008365
Gorbach A V, Skryabin D V, Stone J M, et al. Four-wave mixingof solitons with radiation and quasi-nondispersive wave packets atthe short-wavelength edge of a supercontinuum. Optics Express, 2006, 14(21): 9854―9863

doi: 10.1364/OE.14.009854
Nakajima K, Matsui T, Kurokawa K, et al. High-speed and widebandtransmission using dispersion-compensating/managing photonic crystalfiber and dispersion-shifted fiber. Journalof Lightwave Technology, 2007, 25(9): 2719―2726

doi: 10.1109/JLT.2007.902754
Yang S G, Zhang Y J, He L N, et al. Experimental demonstration of very high negativechromatic dispersion dual-core photonic crystal fiber.In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA6
Yang S G, Zhang Y J, Peng X Z, et al. Theoretical studyand experimental fabrication of high negative dispersion photoniccrystal fiber with large area mode field. Optics Express, 2006, 14(7): 3015―3023

doi: 10.1364/OE.14.003015
Murao T, Saitoh K, Florous N J, et al. Single-mode air-guiding photonic bandgap fiberwith improved broadband transmission characteristics: the benefitsof an anti-resonant core design. In: Proceedingsof OFC/NFOEC’2007, Anaheim. 2007, JWA4
Skorobogatiy M, Dupuis A, Guo N. Design and fabrication of ferroelectric all-polymer hollowBragg fibers for THz guidance. In: Proceedingsof OFC/NFOEC’2007, Anaheim. 2007, JWA98
Bigot L, Pureur V, Jaouen Y, et al. Ytterbium-doped 2D solid core photonic bandgapfiber for laser operation at 980?nm. In: Proceedings of ECOC’2007, Berlin. 2007, Session 1.4.5
Taru T, Hou J, Knight J C. Raman gain suppression in all-solid photonic bandgapfiber. In: Proceedings of ECOC’2007,Berlin. 2007, Session 7.1.1
Likhachev M E, Levchenko A E, Bubnov M M, et al. Low-loss dispersion-shifted solid-core photonicbandgap bragg fiber. In: Proceedings ofECOC’2007, Berlin. 2007, Session7.1.2
Goto R, Takenaga K, Matsuo S, et al. Solid photonic band-gap fiber with 400?nm bandwidthand loss below 4?dB/km at 1520?nm. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OLM7
Kosolapov A F, Semjonov S L, Denisov A N, et al. Mechanical strength and fatigue of microstructuredoptical fibers. In: Proceedings of OFC/NFOEC’2007,Anaheim. 2007, OThA3
Stach M, Broeng J, Petersson A, et al. 10?Gbit/s 850?nm VCSEL based data transmissionover 100?m-long multimode photonic crystal fibers. In: Proceedings of ECOC’2003, Rimini, 2003, Th3.3.3
Kurokawa K, Tajima K, Nakajima K. 10?GHz 0.5?ps pulse generation in 1000?nm band in PCFfor high speed optical communication. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, PDP5
Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructuredfibers. In: Proceedings of OFC/NFOEC’2006,Anaheim. 2006, OThH1
Kurokawa K, Nakajima K, Tsujikawa K, et al. Penalty-free 40?Gb/s transmission in 1000?nmband over low loss PCF. In: Proceedingsof OFC/NFOEC’2006, Anaheim. 2006, OThH2
Florous N, Saitoh K, Koshiba M. The role of artificial defectsfor engineering large effective mode area, flat chromatic dispersion,and low leakage losses in photonic crystal fibers: towards high speedreconfigurable transmission platforms. Optics Express, 2006, 14(2): 901―913

doi: 10.1364/OPEX.14.000901
Kwok C H, Chow C W, Tsang H K, et al. S/C/L-band wavelength conversion by cross-polarizationmodulation in a dispersion-flattened nonlinear photonic-crystal fiber. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThA4
Kim G H, Han Y G, Cho H S,et al. A novel fabrication method of versatile holeyfibers with low bending loss and their optical characteristics. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OWI2
Kurashima T, Hiramatsu K, Aoyama H, et al. Potential of hole-assisted fibres in opticalaccess and in-house networks. In: Proceedingsof ECOC’2007, Berlin. 2007, Session6.1.1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed