Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2009, Vol. 2 Issue (1) : 103-107    https://doi.org/10.1007/s12200-009-0004-1
Research articles
Plasma photonic crystal
Wei LI 1, Yong ZHAO 1, Ruizhen CUI 2, Haitao ZHANG 2,
1.Department of Automation, Tsinghua University, Beijing 100084, China; 2.Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
 Download: PDF(188 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Plasma photonic crystals are presented in this paper. A plasma photonic crystal can control the propagation of electromagnetic waves. Similar to other photonic crystals, the permittivity of a plasma photonic crystal is distributed as periodic arrays. The properties of periodic arrays of plasma can broaden the range of frequency and enhance the efficiency of beam-wave interaction. In special uses, the behavior of plasma shows that it has properties of photonic crystals.
Issue Date: 05 March 2009
 Cite this article:   
Wei LI,Yong ZHAO,Ruizhen CUI, et al. Plasma photonic crystal[J]. Front. Optoelectron., 2009, 2(1): 103-107.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0004-1
https://academic.hep.com.cn/foe/EN/Y2009/V2/I1/103
Yablonovich E. Inhibited spontaneous emissionin solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059―2062

doi: 10.1103/PhysRevLett.58.2059
John S. Strong localization of photons in certaindisordered dielectric superlattices. PhysicalReview Letters, 1987, 58(23): 2486―2489

doi: 10.1103/PhysRevLett.58.2486
Liu S G, Barker R J, Zhu D J, et al. Basic theoreticalformulations of plasma microwave electronics, Part I: A fluid modelanalysis of electron beam-wave interactions. IEEE Transactions on Plasma Science, 2000, 28(6): 2135―2151

doi: 10.1109/27.902241
Liu S G, Barker R J, Yan Y, et al. Basic theoreticalformulations of plasma microwave electronics, Part II: Kinetic theoryof electron beam-wave interactions. IEEETransactions on Plasma Science, 2000, 28(6): 2152―2165

doi: 10.1109/27.902242
Li W, Wei Y Y, Xie H Q, et al. “Cold” dispersionrelation of corrugated waveguide filled with plasma immersed in afinite magnetic field. Chinese Physics, 2003, 12(5): 532―537

doi: 10.1088/1009-1963/12/5/313
Li W, Gong M L, Wei Y Y, et al. The dispersive properties ofa dielectric-rod loaded waveguide immersed in a magnetized annularplasma. Chinese Physics, 2004, 13(1): 54―59

doi: 10.1088/1009-1963/13/1/011
Li W, Gao H, Gong M L, et al. Theory of electromagnetic wavepropagation in a plasma-filled corrugate waveguide immersed in a finitemagnetized field. Chinese Physics, 2004, 13(8): 1296―1301

doi: 10.1088/1009-1963/13/8/020
Goncharov A A, Zatuagan A V, Protsenko I M. Focusing and control of multiaperture ion beams by plasma lenses. IEEE Transactions on Plasma Science, 1993, 21(5): 578―581

doi: 10.1109/27.249646
Dwyer T, Greig J, Murphy D, et al. On the feasibilityof using an atmospheric discharge plasma as an RF Antenna. IEEE Transactions on Antennas and propagation, 1984, 32(2): 141―146

doi: 10.1109/TAP.1984.1143275
Chaudhury B, Chaturvedi S. Three-dimensionalcomputation of reduction in radar cross section using plasma shielding. IEEE Transactions on Plasma Science, 2005, 33(6): 2027–2034

doi: 10.1109/TPS.2005.860122
Botton M, Ron A. Self-induced distributedfeedback in plasma-filled Cerenkov free electron masers. Physics of Fluids, 1992, B4(7): 1979―1988
Botton M, Ron A. Efficiencyenhancement of a plasma-filled backward-wave oscillator by self-induceddistributed feedback. Physical Review Letters, 1999, 66(19): 2468–2471

doi: 10.1103/PhysRevLett.66.2468
Lin A T, Chen L. Plasma-inducedefficiency enhancement in a backward wave oscillator. Physical Review Letters, 1989, 63(26): 2808―2811

doi: 10.1103/PhysRevLett.63.2808
Xiao S, Mo Y L. Study of open cavity filled with plasma density grating. IEEE Transactions on Plasma Science, 1999, 27(5): 1495―1500

doi: 10.1109/27.799831
Kosai H, Garate E P, Fisher A. Plasma-filled dielectricCherenkov maser. IEEE Transactions on PlasmaScience, 1990, 18(6): 1002―1007

doi: 10.1109/27.61516
Carmel Y, Minami K, Kehs R A, et al. Demonstration ofefficiency enhancement in a high-power backward-wave oscillator byplasma injection. Physical Review Letters, 1989, 62(20): 2389―2392

doi: 10.1103/PhysRevLett.62.2389
Carmel Y, Minami K, Lou W, et al. High-power microwavegeneration by excitation of a plasma-filled rippled boundary resonator. IEEE Transactions on Plasma Science, 1990, 18(3): 497―506

doi: 10.1109/27.55920
Lin A T. Magnetic field effects on plasma-filledbackward wave oscillators. Proceedingsof SPIE, 1991, 1407: 234―241

doi: 10.1117/12.43500
Ali M M, Minami K, Ogura K, et al. Absolute instabilityfor enhanced radiation from a high-power plasma-filled backward-waveoscillator. Physical Review Letters, 1990, 65(13): 855―858

doi: 10.1103/PhysRevLett.65.855
Li W, Zhan H T, Gong M L. Plasma photonics crystal. Optical Technique, 2004, 30(3): 263―266 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed