Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2009, Vol. 2 Issue (1) : 113-117    https://doi.org/10.1007/s12200-009-0006-z
Research articles
AlGaN solar-blind photodetectors grown by low pressure MOCVD
Xiaoyan WANG , Xiaoliang WANG , Baozhu WANG , Junxue RAN , Hongling XIAO , Cuimei WANG , Guoxin HU ,
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
 Download: PDF(144 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract AlxGa1−xN ternary alloys are very attractive materials for application to ultraviolet (UV) photodetection. In this work, high Al content AlxGa1−xN films are grown on sapphire substrate by low pressure metalorganic chemical vapor deposition (MOCVD). The Al content in the AlxGa1−xN epilayer is estimated to be 54% by high resolution X-ray diffraction (HRXRD) and Vegard’s law. The full width at half maximum (FWHM) of the rocking curve for the Al0.54Ga0.46N (0002) is about 597 arcsec. According to the transmittance measurement result, our sample is suitable for fabricating solar-blind photodetectors. The observed Fabry-Perot fringes in the transmission region indicate that high optical quality is obtained. Solar-blind metal-semiconductor-metal (MSM) photodetectors based on the MOCVD-grown Al0.54Ga0.46N film are fabricated and tested. The detector has a low dark current of about 31?pA under a bias voltage of 5?V. An UV/visible contrast of about four orders of magnitude is observed and responsivity increases with increments of the bias voltage.
Issue Date: 05 March 2009
 Cite this article:   
Xiaoyan WANG,Xiaoliang WANG,Baozhu WANG, et al. AlGaN solar-blind photodetectors grown by low pressure MOCVD[J]. Front. Optoelectron., 2009, 2(1): 113-117.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0006-z
https://academic.hep.com.cn/foe/EN/Y2009/V2/I1/113
Kumakura K, Makimoto T. High-voltage operation withhigh current gain of pnp AlGaN/GaN heterojunction bipolar transistorswith thin n-type GaN base. Applied PhysicsLetters, 2005, 86(2): 023506-1―023506-3
Liu Y, Egawa T, Jiang H, Zhang B J, Ishikawa H. Novelquaternary AlInGaN/GaN heterostructure field effect transistors onsapphire substrate. Japanese Journal ofApplied Physics, 2006, 45(7): 5728―5731

doi: 10.1143/JJAP.45.5728
Wang X L, Wang C M, Hu G X, Wang J X, Chen T S, Jiao G, Li J P, Zeng Y P, Li J M. Improved DC and RF performance of AlGaN/GaN HEMTs grownby MOCVD on sapphire substrates. Solid-StateElectronics, 2005, 49(8): 1387―1390

doi: 10.1016/j.sse.2005.06.022
Wang X L, Wang C M, Hu G X, Xiao H L, Fang C B, Wang J X, Ran J X, Li J P, Li J M, Wang Z G. MOCVD-grownhigh-mobility Al0.3Ga0.7N/AlN/GaN HEMT structure on sapphire substrate. Journal of Crystal Growth, 2007, 298: 791―793

doi: 10.1016/j.jcrysgro.2006.10.217
Wang X L, Hu G X, Ma Z Y, Ran J X, Wang C M, Xiao H L, Tang J, Li J P, Wang J X, Zeng Y P, Li J M, Wang Z G. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layeras channel grown by MOCVD. Journal of CrystalGrowth, 2007, 298: 835―839

doi: 10.1016/j.jcrysgro.2006.10.219
Wang X L, Cheng T S, Ma Z Y, Hu G X, Xiao H L, Ran J X, Wang C M, Luo W J. 1-mm gate periphery AlGaN/AlN/GaNHEMTs on SiC with output power of 9.39?W at 8?GHz. Solid-State Electronics, 2007, 51(3): 428―432

doi: 10.1016/j.sse.2006.12.010
Wang X L, Wang C M, Hu G X, Wang J X, Li J P. Room temperaturemobility above 2100?cm2/Vs in Al0.3Ga0.7N/AlN/GaN heterostructuresgrown on sapphire substrates by MOCVD. Physica Status Solidi C, 2006, 3(3): 607―610

doi: 10.1002/pssc.200564130
Wang X L, Chen T S, Xiao H L, Wang C M, Hu G X, Luo W J, Tang J, Guo L C, Li J M. High-performance 2?mm gate width GaN HEMTs on 6H-SiCwith output power of 22.4?W?@?8?GHz. Solid-StateElectronics, 2008, 52(6): 926―929

doi: 10.1016/j.sse.2007.12.014
Nakamura S, Mukai T, Senoh M. Candela-class high-brightnessInGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687―1689

doi: 10.1063/1.111832
Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K. InGaN/GaN/AlGaN-based laser diodes withmodulation-doped strained-layer superlattices grown on an epitaxiallylaterally overgrown GaN substrate. AppliedPhysics Letters, 1998, 72(2): 211―213

doi: 10.1063/1.120688
Adivarahan V, Wu S, Zhang J P, Chitnis A, Shatalov M, Mandavilli V, Gaska R, Khan M A. High-efficiency269?nm emission deep ultraviolet light-emitting diodes. Applied Physics Letters, 2004, 84(23): 4762―4764

doi: 10.1063/1.1756202
Nishida T, Saito H, Kobayashi N. Efficient and high-powerAlGaN-based ultraviolet light-emitting diode grown on bulk GaN. Applied Physics Letters, 2001, 79(6): 711―712

doi: 10.1063/1.1390485
Martin R W, Edwards P R, Pecharroman-Gallego R, Liu C, Deatcher C J, Watson I M, O'Donnell K P. Light emission ranging from blue to red from a seriesof InGaN/GaN single quantum wells. Journalof Physics D: Applied Physics, 2002, 35(7): 604―608

doi: 10.1088/0022-3727/35/7/306
Walker D, Kumar V, Mi K, Sandvik P, Kung P, Zhang X H, Razeghi M. Solar-blindAlGaN photodiodes with very low cutoff wavelength. Applied Physics Letters, 2000, 76(4): 403―405

doi: 10.1063/1.125768
Sandvik P, Walker D, Kung P, Mi K, Shahedipour F, Kumar V, Zhang H, Diaz J, Jelen C, Razeghi M. Solar-blindAlxGa1−xN p-i-n photodetectorsgrown on LEO and non-LEO GaN. Proceedingsof SPIE, 2000, 3948: 265―272

doi: 10.1117/12.382126
Lambert D J H, Wong M M, Chowdhury U, Collins C, Li T, Kwon H K, Shelton B S, Zhu T G, Campbell J C, Dupuis R D. Back illuminated AlGaN solar-blindphotodetectors. Applied Physics Letters, 2000, 77(12): 1900―1902

doi: 10.1063/1.1311821
Brown J D, Li J, Srinivasan P, Matthews J, Schetzina J F. Solar-blind AlGaN heterostructurephotodiodes. MRS Internet Journal of NitrideSemiconductor Research, 2000, 5: 9
Tarsa E J, Kozodoy P, Ibbetson J, Keller B P, Parish G, Mishra U. Solar-blind AlGaN-based invertedheterostructure photodiodes. Applied PhysicsLetters, 2000, 77(3): 316―318

doi: 10.1063/1.126962
Duboz J Y, Grandjean N, Dussaigne A, Mosca M, Reverchon J L, Verly P G, Simpson R H. Solar blind AlGaN photodetectors with a very high spectralselectivity. The European Physical Journal—Applied Physics, 2006, 33(1): 5―7

doi: 10.1051/epjap:2006002
Keller S, Denbaars S P. Metalorganic chemical vapor deposition of group III nitrides: a discussionof critical issues. Journal of CrystalGrowth, 2003, 248(1―4): 479―486

doi: 10.1016/S0022-0248(02)01867-5
Monroy E, Daudin B, Bellet-Amalric E, Gogneau N, Jalabert D, Enjalbert F, Brault J, Barjon J, Dang L S. Surfactant effect of In for AlGaN growthby plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2003, 93(3): 1550―1556

doi: 10.1063/1.1535734
Wang X L. Investigations on the epitaxial growth and characteristics of AlGaNwith high Al content via metalorganic chemical vapor deposition. Dissertation for the Doctoral Degree. Beijing: Institute of Semiconductors, 2007, 25
Bowen D K, Tanner B K. High Resolution X-Ray Diffractometryand Topography. Padstow: CRC Press, 1998, 64
Palacios T, Monroy E, Calle F, Omnès F. High-responsivity submicron metal-semiconductor-metalultraviolet detectors. Applied PhysicsLetters, 2002, 81(10): 1902―1904

doi: 10.1063/1.1504492
Wang X Y, Wang X L, Hu G X, Wang B Z, Ma Z Y, Xiao H L, Wang C M, Ran J X, Li J P. Characteristics of high Al content AlxGa1−xN grownby metalorganic chemical vapor deposition. Microelectronics Journal, 2007, 38(8―9): 838―841

doi: 10.1016/j.mejo.2007.07.090
Parish G. Growthand characterization of aluminum gallium nitride/gallium nitride ultravioletdetectors. Dissertation for the DoctoralDegree. Santa Barbara: University of California, 2001, 12
Pau J L, Monroy E, Munoz E, Calle F, Sanchez-Garcia M A, Calleja E. Fast AlGaN metal-semiconductor-metalphotodetectors grown on Si(111). ElectronicsLetters, 2001, 37(4): 239―240

doi: 10.1049/el:20010146
Lee I H. Low darkcurrent Schottky metal-semiconductor-metal photodetectors fabricatedon AlGaN epitaxial layers for visible-blind ultraviolet detection. Physica Status Solidi A, 2002, 192(1): R4―R6

doi: 10.1002/1521-396X(200207)192:1<R4::AID-PSSA99994>3.0.CO;2-N
Osinsky A, Gangopadhyay S, Yang J W, Gaska R, Kuksenkov D, Temkin H, Shmagin I K, Chang Y C, Muth J F, Kolbas R M. Visible-blind GaN Schottky barrier detectors grown on Si(111). Applied Physics Letters, 1998, 72(5): 551―553

doi: 10.1063/1.120755
Carrano J C, Grudowski P A, Eiting C J, Dupuis R D, Campbell J C. Current transport mechanisms in GaN-based metal-semiconductor-metalphotodetectors. Applied Physics Letters, 1998, 72(5): 542―544

doi: 10.1063/1.120752
Burm J, Eastman L F. Low-frequency gain in MSM photodiodes due to charge accumulationand image force lowering. IEEE PhotonicsTechnology Letters, 1996, 8(1): 113―115

doi: 10.1109/68.475796
Katz O, Garber V, Meyler B, Bahir G, Salzman J. Gainmechanism in GaN Schottky ultraviolet detectors. Applied Physics Letters, 2001, 79(10): 1417―1419

doi: 10.1063/1.1394717
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed