|
|
|
Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods |
Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE( ) |
| Centre for Optical and Electromagnetic Research, Joint Research Center of Photonics of the Royal Institute of Technology (Sweden) and Zhejiang University, Zhejiang University, Hangzhou 310058, China |
|
|
|
|
Abstract Plasmon-resonant gold nanorods (GNRs) are demonstrated as strong absorption contrast agents for optical coherence tomography (OCT). OCT imaging of tissue phantoms doped with GNRs of different resonant wavelengths and concentrations is studied. To utilize the high absorption property of GNRs, a differential absorption OCT imaging is introduced to retrieve the absorption information of GNRs from conventional backscattered signals. It is shown that the contrast of the OCT image can be enhanced significantly when the plasmon resonant wavelength of the GNRs matches the central wavelength of the OCT source.
|
| Keywords
optical coherence tomography (OCT)
plasmon resonance
gold nanorod (GNR)
differential absorption
|
|
Corresponding Author(s):
HE Sailing,Email:sailing@kth.se
|
|
Issue Date: 05 June 2009
|
|
| 1 |
Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science , 1991, 254(5035): 1178-1181 doi: 10.1126/science.1957169
|
| 2 |
Barton J K, Hoying J B, Sullivan C J. Use of microbubbles as an optical coherence tomography contrast agent. Academic Radiology , 2002, 9(1): S52-S55 doi: 10.1016/S1076-6332(03)80395-1
|
| 3 |
Lee T M, Oldenburg A L, Sitafalwalla S, Marks D L, Luo W, Toublan F J J, Suslick K S, Boppart S A. Engineered microsphere contrast agents for optical coherence tomography. Optics Letters , 2003, 28(17): 1546-1548 doi: 10.1364/OL.28.001546
|
| 4 |
Boppart S A, Oldenburg A L, Xu C, Marks D L. Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics , 2005, 10(4): 041208 doi: 10.1117/1.2008974
|
| 5 |
Murphy C J, Gole A M, Stone J W, Sisco P N, Alkilany A M, Goldsmith E C, Baxter S C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of Chemical Research , 2008, 41(12): 1721-1730 doi: 10.1021/ar800035u
|
| 6 |
Connor E E, Mwamuka J, Gole A, Murphy C J, Wyatt M D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small , 2005, 1(3): 325-327 doi: 10.1002/smll.200400093
|
| 7 |
Sonnichsen C, Franzl T, Wilk T, Von Plessen G, Feldmann J, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters , 2002, 88(7): 077402 doi: 10.1103/PhysRevLett.88.077402
|
| 8 |
Zagaynova E V, Shirmanova M V, Kirillin M Y , Khlebtsov B N, Orlova A G, Balalaeva I V, Sirotkina M A, Bugrova M L, Agrba P D, Kamensky V A. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Physics in Medicine and Biology , 2008, 53(18) 4995-5009 doi: 10.1088/0031-9155/53/18/010
|
| 9 |
Cang H, Sun T, Li Z Y, Chen J, Wiley B J, Xia Y, Li X. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters , 2005, 30(22): 3048-3050 doi: 10.1364/OL.30.003048
|
| 10 |
Oldenburg A L, Hansen M N, Zweifel D A, Wei A, Boppart S A. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express , 2006, 14(15): 6724-6738 doi: 10.1364/OE.14.006724
|
| 11 |
Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B , 2001, 105(19): 4065-4067 doi: 10.1021/jp0107964
|
| 12 |
Huang X, El-Sayed I H, Qian W, El-Sayed M A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society , 2006, 128(6): 2115-2120 doi: 10.1021/ja057254a
|
| 13 |
Troutman T S, Barton J K, Romanowski M. Optical coherence tomography with plasmon resonant nanorods of gold. Optics Letters , 2007, 32(11): 1438-1440 doi: 10.1364/OL.32.001438
|
| 14 |
Adler D C, Huang S, Huber R, Fujimoto J G. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express , 2008, 16(7): 4376-4393 doi: 10.1364/OE.16.004376
|
| 15 |
Skala M C, Crow M J, Wax A, Izatt J A. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Letters , 2008, 8(10): 3461-3467 doi: 10.1021/nl802351p
|
| 16 |
Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B , 2006, 110(14): 7238-7248 doi: 10.1021/jp057170o
|
| 17 |
Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science , 2006, 311(5761): 622-627 doi: 10.1126/science.1114397
|
| 18 |
Prescott S W, Mulvaneya P. Gold nanorod extinction spectra. Journal of Applied Physics , 2006, 99(12): 123504 doi: 10.1063/1.2203212
|
| 19 |
Babak N, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry Materials , 2003, 15(10): 1957-1962 doi: 10.1021/cm020732l
|
| 20 |
Swartling J, Dam J S, Andersson-Engels S. Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties. Applied Optics , 2003, 42(22): 4612-4621 doi: 10.1364/AO.42.004612
|
| 21 |
Zaccanti G, Bianco S D, Marelli F. Measurements of optical properties of high-density media. Applied Optics , 2003, 42(19): 4023-4030 doi: 10.1364/AO.42.004023
|
| 22 |
Van Leeuwen T G, Faber D J, Aalders M C. Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics , 2003, 9(2): 227-234 doi: 10.1109/JSTQE.2003.813299
|
| 23 |
Schmitt J M, Knuttel A, Bonner R F. Measurement of optical properties of biological tissues by low coherence reflectometry. Applied Optics , 1993, 32(30): 6032-6042 doi: 10.1364/AO.32.006032
|
| 24 |
Schmitt J M, Xiang S H, Yung K M. Differential absorption imaging with optical coherence tomography. Journal of the Optical Society of American A , 1998, 15(9): 2288-2296 doi: 10.1364/JOSAA.15.002288
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|