Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (2) : 141-145    https://doi.org/10.1007/s12200-009-0012-1
RESEARCH ARTICLE
Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods
Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE()
Centre for Optical and Electromagnetic Research, Joint Research Center of Photonics of the Royal Institute of Technology (Sweden) and Zhejiang University, Zhejiang University, Hangzhou 310058, China
 Download: PDF(199 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plasmon-resonant gold nanorods (GNRs) are demonstrated as strong absorption contrast agents for optical coherence tomography (OCT). OCT imaging of tissue phantoms doped with GNRs of different resonant wavelengths and concentrations is studied. To utilize the high absorption property of GNRs, a differential absorption OCT imaging is introduced to retrieve the absorption information of GNRs from conventional backscattered signals. It is shown that the contrast of the OCT image can be enhanced significantly when the plasmon resonant wavelength of the GNRs matches the central wavelength of the OCT source.

Keywords optical coherence tomography (OCT)      plasmon resonance      gold nanorod (GNR)      differential absorption     
Corresponding Author(s): HE Sailing,Email:sailing@kth.se   
Issue Date: 05 June 2009
 Cite this article:   
Qiuqiang ZHAN,Ming WEI,Fuhong CAI, et al. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Front Optoelec Chin, 2009, 2(2): 141-145.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0012-1
https://academic.hep.com.cn/foe/EN/Y2009/V2/I2/141
Fig.1  TEM pictures of GNRs with longitudinal resonant peak at (a) 945 nm and (b) 666 nm (scale bars are 100 nm), and (c) extinction spectra of these two GNRs samples [solid line: GNRs shown in (a); dashed line: GNRs shown in (b)]
Fig.2  Setup of time-domain OCT system
Fig.3  
Fig.4  (a) Cross-sectional OCT images of tissue phantom doped with GNRs with resonance at 945 nm. Concentrations of GNRs in different parts of phantom (from left to right) are: 8 pmol/mL (Part 1), 5 pmol/mL (Part 2), and 0 (Part 3); (b) cross-sectional OCT images of tissue phantom doped with GNRs with resonance at 666 nm. Concentrations of GNRs are the same as those in (a), vertical scale bars are 200 μm; (c) demodulated OCT intensities decay with their best-fit lines (dashed lines) for different concentrations of GNRs used in (a)
Fig.5  
Fig.6  Conventional OCT signals of two-layer phantom indicative of (a) backscattered intensity (the two layers are separated in a red solid line) and (b) differential absorption signal (the layer inside the square of the image is phantom doped with GNRs resonant at 945 nm at a concentration of 2 pmol/mL, scale bars are 200 μm); (c) demodulated OCT intensity decay with their best-fit lines (dashed lines) of phantom with TiO only
1 Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science , 1991, 254(5035): 1178-1181
doi: 10.1126/science.1957169
2 Barton J K, Hoying J B, Sullivan C J. Use of microbubbles as an optical coherence tomography contrast agent. Academic Radiology , 2002, 9(1): S52-S55
doi: 10.1016/S1076-6332(03)80395-1
3 Lee T M, Oldenburg A L, Sitafalwalla S, Marks D L, Luo W, Toublan F J J, Suslick K S, Boppart S A. Engineered microsphere contrast agents for optical coherence tomography. Optics Letters , 2003, 28(17): 1546-1548
doi: 10.1364/OL.28.001546
4 Boppart S A, Oldenburg A L, Xu C, Marks D L. Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics , 2005, 10(4): 041208
doi: 10.1117/1.2008974
5 Murphy C J, Gole A M, Stone J W, Sisco P N, Alkilany A M, Goldsmith E C, Baxter S C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of Chemical Research , 2008, 41(12): 1721-1730
doi: 10.1021/ar800035u
6 Connor E E, Mwamuka J, Gole A, Murphy C J, Wyatt M D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small , 2005, 1(3): 325-327
doi: 10.1002/smll.200400093
7 Sonnichsen C, Franzl T, Wilk T, Von Plessen G, Feldmann J, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters , 2002, 88(7): 077402
doi: 10.1103/PhysRevLett.88.077402
8 Zagaynova E V, Shirmanova M V, Kirillin M Y , Khlebtsov B N, Orlova A G, Balalaeva I V, Sirotkina M A, Bugrova M L, Agrba P D, Kamensky V A. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Physics in Medicine and Biology , 2008, 53(18) 4995-5009
doi: 10.1088/0031-9155/53/18/010
9 Cang H, Sun T, Li Z Y, Chen J, Wiley B J, Xia Y, Li X. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters , 2005, 30(22): 3048-3050
doi: 10.1364/OL.30.003048
10 Oldenburg A L, Hansen M N, Zweifel D A, Wei A, Boppart S A. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express , 2006, 14(15): 6724-6738
doi: 10.1364/OE.14.006724
11 Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B , 2001, 105(19): 4065-4067
doi: 10.1021/jp0107964
12 Huang X, El-Sayed I H, Qian W, El-Sayed M A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society , 2006, 128(6): 2115-2120
doi: 10.1021/ja057254a
13 Troutman T S, Barton J K, Romanowski M. Optical coherence tomography with plasmon resonant nanorods of gold. Optics Letters , 2007, 32(11): 1438-1440
doi: 10.1364/OL.32.001438
14 Adler D C, Huang S, Huber R, Fujimoto J G. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express , 2008, 16(7): 4376-4393
doi: 10.1364/OE.16.004376
15 Skala M C, Crow M J, Wax A, Izatt J A. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Letters , 2008, 8(10): 3461-3467
doi: 10.1021/nl802351p
16 Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B , 2006, 110(14): 7238-7248
doi: 10.1021/jp057170o
17 Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science , 2006, 311(5761): 622-627
doi: 10.1126/science.1114397
18 Prescott S W, Mulvaneya P. Gold nanorod extinction spectra. Journal of Applied Physics , 2006, 99(12): 123504
doi: 10.1063/1.2203212
19 Babak N, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry Materials , 2003, 15(10): 1957-1962
doi: 10.1021/cm020732l
20 Swartling J, Dam J S, Andersson-Engels S. Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties. Applied Optics , 2003, 42(22): 4612-4621
doi: 10.1364/AO.42.004612
21 Zaccanti G, Bianco S D, Marelli F. Measurements of optical properties of high-density media. Applied Optics , 2003, 42(19): 4023-4030
doi: 10.1364/AO.42.004023
22 Van Leeuwen T G, Faber D J, Aalders M C. Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics , 2003, 9(2): 227-234
doi: 10.1109/JSTQE.2003.813299
23 Schmitt J M, Knuttel A, Bonner R F. Measurement of optical properties of biological tissues by low coherence reflectometry. Applied Optics , 1993, 32(30): 6032-6042
doi: 10.1364/AO.32.006032
24 Schmitt J M, Xiang S H, Yung K M. Differential absorption imaging with optical coherence tomography. Journal of the Optical Society of American A , 1998, 15(9): 2288-2296
doi: 10.1364/JOSAA.15.002288
[1] Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2020, 13(4): 393-401.
[2] Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Front. Optoelectron., 2020, 13(4): 381-392.
[3] Briliant Adhi PRABOWO, I Dewa Putu HERMIDA, Robeth Viktoria MANURUNG, Agnes PURWIDYANTRI, Kou-Chen LIU. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
[4] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[5] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
[6] Yan DENG, Jian OU, Jiangying YU, Min ZHANG, Li ZHANG. Coupled two aluminum nanorod antennas for near-field enhancement[J]. Front. Optoelectron., 2017, 10(2): 138-143.
[7] Kun LI,Weiwei QIN,Yan XU,Tianhuan PENG,Di LI. Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution[J]. Front. Optoelectron., 2015, 8(4): 379-393.
[8] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[9] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[10] Jian GAO,Xiao PENG,Peng LI,Zhihua DING,Junle QU,Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
[11] Wei Ting CHEN,Pin Chieh WU,Kuang-Yu YANG,Din Ping TSAI. Manipulation of spectral amplitude and phase with plasmonic nano-structures for information storage[J]. Front. Optoelectron., 2014, 7(4): 437-442.
[12] Kaushik BRAHMACHARI, Mina RAY. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Front Optoelec, 2013, 6(2): 185-193.
[13] Changkui HU, Deming LIU. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating[J]. Front Optoelec Chin, 2009, 2(2): 182-186.
[14] Xiaonong ZHU, Yanmei LIANG, Youxin MAO, Yaqing JIA, Yiheng LIU, Guoguang MU. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed