|
|
|
Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows |
Yongzhao XU1( ), Zhixin CHEN2, Hongtao LI1, Yanfen WEI3 |
| 1. Department of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China; 2. School of Information, Central University of Finance and Economics, Beijing 100081, China; 3. Tianjin Mobile Communications Corporation, Tianjin 300021, China |
|
|
|
|
Abstract We numerically studied supercontinuum generation in a tapered photonic crystal fiber with flattened dispersion properties. The fiber was weakly tapered to have normal dispersion at wavelengths around 1.55 μm after a certain distance. We pumped 4 ps pulses with low peak power and found that flatly broadened, wideband supercontinuum was generated in telecommunication windows. Furthermore, we also demonstrated the effects of tapered length and pulse width of the pump pulse on supercontinuum generation.
|
| Keywords
fiber optics
photonic crystal fiber
dispersion
supercontinuum
|
|
Corresponding Author(s):
XU Yongzhao,Email:xuyongzhao@gmail.com
|
|
Issue Date: 05 September 2009
|
|
| 1 |
Ravi Kanth Kumar V V, George A K, Reeves W H, Knight J C,Russell P St J . Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express , 2002, 10(25): 1520-1525
|
| 2 |
Yu Y Q, Ruan S C, Du C L, Yao J Q. Spectral broadening in the 1.3 μm region using a 1.8-m-long photonic crystal fiber by femtosecond pulses from an optical parametric amplifier. Acta Photonica Sinica , 2005, 34(4): 481-484 (in Chinese)
|
| 3 |
Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse. Chinese Physics Letters , 2007, 24(3): 734-737 doi: 10.1088/0256-307X/24/3/040
|
| 4 |
Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica , 2004, 53(12): 4243-4247 (in Chinese)
|
| 5 |
Yu Y Q, Ruan S C, Du C L, Yao J Q. Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser. Chinese Physics Letters , 2005, 22(2): 384-387 doi: 10.1088/0256-307X/22/2/032
|
| 6 |
Kudlinski A, George A K. Knight J C. Travers J C, Rulkov A B, Popov S V, Taylor J R. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express , 2006, 14(12): 5715-5722 doi: 10.1364/OE.14.005715
|
| 7 |
Ohara T, Takara H, Yamamoto T, Masuda H, Morioka T, Abe M, Takahashi H. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. Journal of Lightwave Technology , 2006, 24(6): 2311-2317 doi: 10.1109/JLT.2006.874548
|
| 8 |
Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion. Electronics Letters , 2007, 43(2): 87-88 doi: 10.1049/el:20073303
|
| 9 |
Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters , 2003, 15 (12): 1689-1691 doi: 10.1109/LPT.2003.819733
|
| 10 |
Nakasyotani T, Toda H, Kuri T, Kitayama K. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology , 2006, 24(1): 404-410 doi: 10.1109/JLT.2005.859854
|
| 11 |
Lee J H, Kim C H, Han Y G, Lee S B. WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry–Pérot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source. IEEE Photonics Technology Letters , 2006, 18 (17–20): 2108-2110 doi: 10.1109/LPT.2006.883288
|
| 12 |
Wu W Q, Chen X W, Zhou H, Zhou K F, Lin X S, Lan S. Investigation of the ultraflattened dispersion in photonic crystal fibers with hybrid cores. Acta Photonica Sinica , 2006, 35(1): 109-113 (in Chinese)
|
| 13 |
Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express , 2004, 12(10): 2027-2032 doi: 10.1364/OPEX.12.002027
|
| 14 |
Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photonics Technology Letters , 2005, 17 (1); 67-69 doi: 10.1109/LPT.2004.837475
|
| 15 |
Matsui T, Nakajima K, Sankawa I. Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber. Journal of Lightwave Technology , 2007, 25(3): 757-762 doi: 10.1109/JLT.2006.889668
|
| 16 |
Liu J G, Xue L F, Wang Z, Kai G Y, Liu Y G, Zhang W G, Dong X Y. Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes. IEEE Journal of Quantum Electronics , 2006, 42 (9): 961-968 doi: 10.1109/JQE.2006.880375
|
| 17 |
Ju J, Jin W, Suleyman Demokan M. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology , 2006, 24(2): 825-830 doi: 10.1109/JLT.2005.861942
|
| 18 |
Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express , 2003, 11(13): 1537-1540
|
| 19 |
Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics , 2002, 38 (7): 927-933 doi: 10.1109/JQE.2002.1017609
|
| 20 |
Agrawal G P. Nonlinear Fiber Optics. 2nd ed. New York: Academic Press, 1995
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|