|
|
|
Photon properties of light in semiconductor microcavities |
Guangcun SHAN1,2( ), Wei HUANG1,3 |
| 1. Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2. State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 3. Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore |
|
|
|
|
Abstract Properties of atom-like emitters in cavities are successfully described by cavity quantum electrodynamics (cavity-QED). In this work, we focus on the issue of the steady-state and spectral properties of the light emitted by a driven microcavity containing a quantum well (QW) with the excitonic interactions using simulation of fully quantum-mechanical treatment. The system is coherently pumped with laser, and it is found that depending on the relative values of pumping rate of stimulated emission, either one or two peaks close to the excitation energy of the QW or to the natural frequency of the cavity are shown in the emission spectrum. Furthermore, the nonclassical proprieties of the emitted photon have been investigated. This excitonic system presents several dynamical and statistical similarities to the atomic system, in particular for the bad-cavity and good-cavity limits. The results show that the photon emission can be significantly amplified due to the coupling strength between a single emitter and radiation field in the microcavity, and it is concluded that the present semiconductor microcavity system may serve as a QW laser with low threshold.
|
| Keywords
quantum well (QW)
photon
exciton
exciton-photon interaction
microcavity
|
|
Corresponding Author(s):
SHAN Guangcun,Email:041055004@fudan.edu.cn
|
|
Issue Date: 05 September 2009
|
|
| 1 |
Astratov V N, Yang S, Lam S, Jones D, Sanvitto D, Whittaker D M, Fox A M, Skolnick M S. Whispering gallery resonances in semiconductor micropillars. Applied Physics Letters , 2007, 91(7): 071115-1–071115-3
|
| 2 |
Eleuch H. Photon statistics of light in semiconductor. Journal of Physics B: Atomic, Molecular and Optical Physics , 2008, 41(5): 055502-1–055502-5
|
| 3 |
Painter O. Two-dimensional photonic band-gap defect mode laser. Science , 1999, 284(5421): 1819–1822 doi: 10.1126/science.284.5421.1819
|
| 4 |
Baas A, Karr J, Eleuch H, Giacobino E. Optical bistability in semiconductor microcavities. Physical Review A , 2004, 69(2): 023809-1–023809-8
|
| 5 |
Reithmaier J P, Sek G, Loeffler, A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature , 2004, 432(7065): 197–200 doi: 10.1038/nature02969
|
| 6 |
Peter E, Senellart P, Martrou D, Lema?tre A, Hours J, Gérard J M, Bloch J. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Physical Review Letters , 2005, 95(6): 067401-1–067401-4
|
| 7 |
Eastham P R, Littlewood P B. Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity. Physical Review B , 2006, 73(8): 085306-01–085306-11
|
| 8 |
Shan G C, Huang W. Single dye molecule laser via energy transfer mechanism. Proceedings of SPIE , 2008, 7135: 71351C-1–71351C-8
|
| 9 |
Grundmann M. Nanoscroll formation from strained layer heterostructures. Applied Physics Letters , 2003, 83(12): 2444–2446 doi: 10.1063/1.1613366
|
| 10 |
Nomura M, Iwamoto S. Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity. Applied Physics Letters , 2006, 88(14): 141108-1–141108-3
|
| 11 |
Rempe G, Walter H, Klein N. Observation of quantum collapse and revival in a one-atom maser. Applied Physics Letters , 1987, 58(4): 353–356
|
| 12 |
Dasbach G, Diederichs C, Tignon J, Ciuti C, Roussignol P, Delalande C, Bayer M, Forchel A. Polarization selective polariton oscillation in quasi-one-dimensional microcavities. Physica Status Solidi C , 2005, 2(9): 779–782 doi: 10.1002/pssc.200460346
|
| 13 |
Raizen H G, Thompson R J, Brecha R J, Kimble H J, Carmichael H J. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Physical Review Letters , 1989, 63(3): 240–243 doi: 10.1103/PhysRevLett.63.240
|
| 14 |
Thompson R J, Rempe G, Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity. Phsical Review Letters , 1992, 68(8): 1132–1135 doi: 10.1103/PhysRevLett.68.1132
|
| 15 |
Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Physical Review A , 1999, 59(3): 2418–2422 doi: 10.1103/PhysRevA.59.2418
|
| 16 |
Peter E, Sagnes I, Guirleo G, Varoutsis S, Bloch J, Lema?tre A, Senellart P. High-Q whispering-gallery modes in GaAs/AlOx microdisks. Applied Physics Letters , 2005, 86(2): 021103-1–021103-3
|
| 17 |
Armani D K, Kippenberg J, Spillane S M, Vahala K J. Ultra-high-Q toroid microcavity on a chip. Nature , 2003, 421(6929): 925–928 doi: 10.1038/nature01371
|
| 18 |
Messin G, Karr J P, Eleuch H, Courty J M, Giacobino E. Squeezed states and the quantum noise of light in semiconductor microcavities. Journal of Physics: Condensed Matter , 1999, 11(31): 6069–6078 doi: 10.1088/0953-8984/11/31/314
|
| 19 |
Schwendimann P, Ciuti C, Quattropani A. Statistics of polaritons in the nonlinear regime. Physical Review B , 2003, 68(16): 165324-1–165324-10
|
| 20 |
Karr J P, Baas A, Houdre R, Giacobino E. Squeezing in semiconductor microcavities in the strong-coupling regime. Physical Review A , 2004, 69(3): 031802-1–031802-4
|
| 21 |
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature , 2004, 432(7065): 200–202 doi: 10.1038/nature03119
|
| 22 |
Perea J I, Porras D, Tejedor C. Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B , 2004, 70(11): 115304-1–115304-13
|
| 23 |
Ciuti C, Schwendimann P, Deveaud B, Quattropani A. Theory of the angle-resonant polariton amplifier. Physical Review B , 2000, 62(8): 4825–4828 doi: 10.1103/PhysRevB.62.R4825
|
| 24 |
Wiersig J, Hentschel M. Unidirectional light emission from high-Q modes in optical microcavities. Physical Review A , 2006, 73(3): 031802R-1–031802R-4
|
| 25 |
McKeever J, Boca A, Boozer A D. Experimental realization of a one-atom laser in the regime of strong coupling. Nature , 2003, 425(6955): 268–271 doi: 10.1038/nature01974
|
| 26 |
Eastham P R, Littelewood P B. Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity. Physical Review B , 2006, 73(11): 085306-1–085306-11
|
| 27 |
Scully M O, Zubairy M S. Quantum Optics. London: Cambridge University Press, 1997, 190–220
|
| 28 |
Raithel G, Wagner C, Walther H, Narducci L M, Scully M O. Cavity Quantum Electrodynamics. Boston: Academic Press, 1994, 50–62
|
| 29 |
Carmichael H, Orozco L A. Quantum optics: single atom lases orderly light. Nature , 2003, 425(6955): 246–247 doi: 10.1038/425246a
|
| 30 |
Mu Y, Savage C M. One-atom lasers. Physical Review A , 1992, 46(9): 5944–5954 doi: 10.1103/PhysRevA.46.5944
|
| 31 |
Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Applied Physics Letters , 1992, 69(23): 3314–3317
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|