Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (3) : 345-349    https://doi.org/10.1007/s12200-009-0017-9
RESEARCH ARTICLE
Photon properties of light in semiconductor microcavities
Guangcun SHAN1,2(), Wei HUANG1,3
1. Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2. State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 3. Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
 Download: PDF(153 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Properties of atom-like emitters in cavities are successfully described by cavity quantum electrodynamics (cavity-QED). In this work, we focus on the issue of the steady-state and spectral properties of the light emitted by a driven microcavity containing a quantum well (QW) with the excitonic interactions using simulation of fully quantum-mechanical treatment. The system is coherently pumped with laser, and it is found that depending on the relative values of pumping rate of stimulated emission, either one or two peaks close to the excitation energy of the QW or to the natural frequency of the cavity are shown in the emission spectrum. Furthermore, the nonclassical proprieties of the emitted photon have been investigated. This excitonic system presents several dynamical and statistical similarities to the atomic system, in particular for the bad-cavity and good-cavity limits. The results show that the photon emission can be significantly amplified due to the coupling strength between a single emitter and radiation field in the microcavity, and it is concluded that the present semiconductor microcavity system may serve as a QW laser with low threshold.

Keywords quantum well (QW)      photon      exciton      exciton-photon interaction      microcavity     
Corresponding Author(s): SHAN Guangcun,Email:041055004@fudan.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Wei HUANG,Guangcun SHAN. Photon properties of light in semiconductor microcavities[J]. Front Optoelec Chin, 2009, 2(3): 345-349.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0017-9
https://academic.hep.com.cn/foe/EN/Y2009/V2/I3/345
Fig.1  Mean photon number versus pump strength for various values of with excitonic interaction parameter =0.1 and = 1 MHz
Fig.2  Mean photon number versus pump strength and coupling strength for =1 MHz with excitonic interaction parameter =0.1
Fig.3  Power spectral () versus detuning frequency for various coherent pump strength . (a) =1; (b) =10
1 Astratov V N, Yang S, Lam S, Jones D, Sanvitto D, Whittaker D M, Fox A M, Skolnick M S. Whispering gallery resonances in semiconductor micropillars. Applied Physics Letters , 2007, 91(7): 071115-1–071115-3
2 Eleuch H. Photon statistics of light in semiconductor. Journal of Physics B: Atomic, Molecular and Optical Physics , 2008, 41(5): 055502-1–055502-5
3 Painter O. Two-dimensional photonic band-gap defect mode laser. Science , 1999, 284(5421): 1819–1822
doi: 10.1126/science.284.5421.1819
4 Baas A, Karr J, Eleuch H, Giacobino E. Optical bistability in semiconductor microcavities. Physical Review A , 2004, 69(2): 023809-1–023809-8
5 Reithmaier J P, Sek G, Loeffler, A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature , 2004, 432(7065): 197–200
doi: 10.1038/nature02969
6 Peter E, Senellart P, Martrou D, Lema?tre A, Hours J, Gérard J M, Bloch J. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Physical Review Letters , 2005, 95(6): 067401-1–067401-4
7 Eastham P R, Littlewood P B. Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity. Physical Review B , 2006, 73(8): 085306-01–085306-11
8 Shan G C, Huang W. Single dye molecule laser via energy transfer mechanism. Proceedings of SPIE , 2008, 7135: 71351C-1–71351C-8
9 Grundmann M. Nanoscroll formation from strained layer heterostructures. Applied Physics Letters , 2003, 83(12): 2444–2446
doi: 10.1063/1.1613366
10 Nomura M, Iwamoto S. Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity. Applied Physics Letters , 2006, 88(14): 141108-1–141108-3
11 Rempe G, Walter H, Klein N. Observation of quantum collapse and revival in a one-atom maser. Applied Physics Letters , 1987, 58(4): 353–356
12 Dasbach G, Diederichs C, Tignon J, Ciuti C, Roussignol P, Delalande C, Bayer M, Forchel A. Polarization selective polariton oscillation in quasi-one-dimensional microcavities. Physica Status Solidi C , 2005, 2(9): 779–782
doi: 10.1002/pssc.200460346
13 Raizen H G, Thompson R J, Brecha R J, Kimble H J, Carmichael H J. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Physical Review Letters , 1989, 63(3): 240–243
doi: 10.1103/PhysRevLett.63.240
14 Thompson R J, Rempe G, Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity. Phsical Review Letters , 1992, 68(8): 1132–1135
doi: 10.1103/PhysRevLett.68.1132
15 Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Physical Review A , 1999, 59(3): 2418–2422
doi: 10.1103/PhysRevA.59.2418
16 Peter E, Sagnes I, Guirleo G, Varoutsis S, Bloch J, Lema?tre A, Senellart P. High-Q whispering-gallery modes in GaAs/AlOx microdisks. Applied Physics Letters , 2005, 86(2): 021103-1–021103-3
17 Armani D K, Kippenberg J, Spillane S M, Vahala K J. Ultra-high-Q toroid microcavity on a chip. Nature , 2003, 421(6929): 925–928
doi: 10.1038/nature01371
18 Messin G, Karr J P, Eleuch H, Courty J M, Giacobino E. Squeezed states and the quantum noise of light in semiconductor microcavities. Journal of Physics: Condensed Matter , 1999, 11(31): 6069–6078
doi: 10.1088/0953-8984/11/31/314
19 Schwendimann P, Ciuti C, Quattropani A. Statistics of polaritons in the nonlinear regime. Physical Review B , 2003, 68(16): 165324-1–165324-10
20 Karr J P, Baas A, Houdre R, Giacobino E. Squeezing in semiconductor microcavities in the strong-coupling regime. Physical Review A , 2004, 69(3): 031802-1–031802-4
21 Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature , 2004, 432(7065): 200–202
doi: 10.1038/nature03119
22 Perea J I, Porras D, Tejedor C. Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B , 2004, 70(11): 115304-1–115304-13
23 Ciuti C, Schwendimann P, Deveaud B, Quattropani A. Theory of the angle-resonant polariton amplifier. Physical Review B , 2000, 62(8): 4825–4828
doi: 10.1103/PhysRevB.62.R4825
24 Wiersig J, Hentschel M. Unidirectional light emission from high-Q modes in optical microcavities. Physical Review A , 2006, 73(3): 031802R-1–031802R-4
25 McKeever J, Boca A, Boozer A D. Experimental realization of a one-atom laser in the regime of strong coupling. Nature , 2003, 425(6955): 268–271
doi: 10.1038/nature01974
26 Eastham P R, Littelewood P B. Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity. Physical Review B , 2006, 73(11): 085306-1–085306-11
27 Scully M O, Zubairy M S. Quantum Optics. London: Cambridge University Press, 1997, 190–220
28 Raithel G, Wagner C, Walther H, Narducci L M, Scully M O. Cavity Quantum Electrodynamics. Boston: Academic Press, 1994, 50–62
29 Carmichael H, Orozco L A. Quantum optics: single atom lases orderly light. Nature , 2003, 425(6955): 246–247
doi: 10.1038/425246a
30 Mu Y, Savage C M. One-atom lasers. Physical Review A , 1992, 46(9): 5944–5954
doi: 10.1103/PhysRevA.46.5944
31 Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Applied Physics Letters , 1992, 69(23): 3314–3317
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
[3] Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser[J]. Front. Optoelectron., 2020, 13(2): 149-155.
[4] Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU. Topological photonic crystals: a review[J]. Front. Optoelectron., 2020, 13(1): 50-72.
[5] Chenyang WANG, Hongyu ZHANG, Hongyi YUAN, Jinrui ZHONG, Cuicui LU. Universal numerical calculation method for the Berry curvature and Chern numbers of typical topological photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 73-88.
[6] Oliver SALE, Safaa HASSAN, Noah HURLEY, Khadijah ALNASSER, Usha PHILIPOSE, Hualiang ZHANG, Yuankun LIN. Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics[J]. Front. Optoelectron., 2020, 13(1): 12-17.
[7] Huangjia LI, Boqin MA. Research development on fabrication and optical properties of nonlinear photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 35-49.
[8] Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
[9] Zhen CHAI, Xiaoyong HU, Qihuang GONG. Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film[J]. Front. Optoelectron., 2020, 13(1): 4-11.
[10] Chunxiang ZENG, Zeqing WANG, Yingmao XIE. Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals[J]. Front. Optoelectron., 2019, 12(4): 365-371.
[11] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[12] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[13] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[14] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[15] Fabrizio BUCCHERI, Pingjie HUANG, Xi-Cheng ZHANG. Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas[J]. Front. Optoelectron., 2018, 11(3): 209-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed