Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (3) : 279-284    https://doi.org/10.1007/s12200-009-0018-8
RESEARCH ARTICLE
Novel algorithm for synthesis of fiber gratings
Bo LV1,2(), Ming CHEN1,2, Dan LU1,2, Taorong GONG1,2, Tangjun LI1,2, Shuisheng JIAN1,2
1. Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China; 2. Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(171 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel algorithm for the synthesis of fiber gratings is presented. For the first time we propose an effective optimal approach to construct a coupling coefficient function by employing 4th-order Runge-Kutta (R-K) analysis method for calculating the reflection spectra of fiber gratings. The numerical results show that with this proposed method, some required optical filters have been yielded with better features compared with other methods such as Gel’Fand-Levitan-Marchenko (GLM) algorithm. In addition, the performance of different interpolation functions particularly utilized in our algorithm, including linear-type, spline-type, and Hermit-type, are discussed in detail.

Keywords gratings      inverse problem      synthesis algorithm,coupling coefficient function      interpolation functions      apodization     
Corresponding Author(s): LV Bo,Email:fengdieer_13@126.com   
Issue Date: 05 September 2009
 Cite this article:   
Bo LV,Ming CHEN,Dan LU, et al. Novel algorithm for synthesis of fiber gratings[J]. Front Optoelec Chin, 2009, 2(3): 279-284.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0018-8
https://academic.hep.com.cn/foe/EN/Y2009/V2/I3/279
scale of searching space BoldItalicnumber of R-Krange of λ/nmresolution of λ/nmevaluation type
N=8 M=322561549.7-1550.30.0012Emax
Tab.1  Parameters in synthesis algorithm
Fig.1  Calculated reflection spectra with different interpolation functions and GLM
Fig.2  Corresponding coupling coefficient function () for building bandpass filter
Fig.3  Coupling coefficient function () for building bandpass filter with low dispersion
Fig.4  In-band dispersion for building bandpass filter with low dispersion
Fig.5  Calculated reflection spectra for bandpass filter with low dispersion
type of interpolation function3 dB bandwidth/nmseparation degree/dBmax in-band dispersion/(ps·nm-1)
spline0.2211.02300
Hermit0.1817.52800
linear0.2414.53200
GLM0.2613.02500
Tab.2  Numerical results with different interpolation functions and GLM for low-dispersion bandpass filter
Fig.6  Practical dispersion grating. (a) Manufactured apodization board with synthesis method; (b) measured reflection spectrum and group delay of chirped fiber Bragg grating
1 Ouellete F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Optics Letters , 1987, 12(10): 847-849
doi: 10.1364/OL.12.000847
2 Sekartedjo K, Eda N, Furuya K, Suematsu Y, Koyama F, Tanbun-Ek T. 1.5 μm phase-shifted DFB lasers for single-mode operation. Electronics Letters , 1984, 20(2): 80-81
doi: 10.1049/el:19840055
3 Yu Q, Pan Z Q, Yan L S, Willner A E. Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection. Journal of Lightwave Technolgy , 2002, 20(12): 2267-2271
doi: 10.1109/JLT.2002.806783
4 Bornholdt C, Kappe F, Müller R, Nolting H P, Reier F, Stenzel R, Venghaus H, Weinert C M. Meander coupler, a novel wavelength division multiplexer/demultiplexer. Applied Physics Letters , 1990, 57(24): 2517-2519
doi: 10.1063/1.103841
5 Loh W H, Cole M J, Zervas M N, Barcelos S, Laming R I. Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique. Optics Letters , 1995, 20(20): 2051-2053
doi: 10.1364/OL.20.002051
6 Asseh A, Storoy H, Sahlgren B E, Sandgren S, Stubbe R A H. A writing technique for long fiber Bragg gratings with complex reflectivity profiles. Journal of Lightwave Technolgy , 1997, 15(8): 1419-1423
doi: 10.1109/50.618372
7 Paster D, Capmany J, Ortega D, Tatay V, Marti J. Design of apodized linearly chirped fiber gratings for dispersion compensation. Journal of Lightwave Technology , 1996, 14(11): 2581-2588
doi: 10.1109/50.548158
8 Winick K A, Roman J E. Design of corrugated waveguide filters by Fourier-transform techniques. IEEE Journal of Quantum Electronics , 1990, 26(11): 1918-1929
doi: 10.1109/3.62111
9 Peral E, Capmany J, Marti J. Iterative solution to the Gel’Fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings. IEEE Journal of Quantum Electronics , 1996, 32(12): 2078-2084
doi: 10.1109/3.544753
10 Feced R, Zervas M N, Muriel M A. An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings. IEEE Journal of Quantum Electronics , 1999, 35(8): 1105-1115
doi: 10.1109/3.777209
11 Brinkmeyer E. Simple algorithm for reconstructing fiber gratings from reflectometric data. Optics Letters , 1995, 20(8): 810-812
doi: 10.1364/OL.20.000810
12 Dobrowolski J A, Lowe D. Optical thin film synthesis program based on the use of Fourier transforms. Applied Optics , 1978, 17(19): 3039-3050
doi: 10.1364/AO.17.003039
13 Skaar J, Risvik K M. A genetic algorithm for the inverse problem in synthesis of fiber gratings. Journal of Lightwave Technology , 1998, 16(10): 1928-1932
doi: 10.1109/50.721082
14 Erdogan T. Fiber grating spectra. Journal of Lightwave Technology , 1997, 15(8): 1277-1294
doi: 10.1109/50.618322
15 Ning T G, Liu Y, Tan Z W, Pei L, Jian S S. Impact on dispersion compensated system using chirped fiber Bragg grating with delay ripple. Acta Optica Sinica , 2003, 23(9): 1064-1067 (in Chinese)
16 Ning T G, Pei L, Liu Y, Tan Z W, Tong Z, Yan F P, Jian S S. Optimization of electron-beam-written step-chirped phase masks to improve quality of the chirped FBG. Journal of Optoelectronics?Laser , 2006, 17(12): 1409-1412 (in Chinese)
17 Tan Z W, Li B, Wang Y H, Ren W H, Liu Y, Ning T G, Jian S S. Background loss of the fiber induced by the ultraviolet light exposure. Chinese Journal of Lasers , 2007, 34(2): 239-242 (in Chinese)
18 Xie Z H, Ning T G, Pei L, Li T J, Jian S S. Fabrication of 13 cm linearly chirped fiber grating. Acta Optica Sinica , 2001, 21(11): 1381-1383 (in Chinese)
19 Tan Z W, Ning T G, Liu Y, Tong Z, Jian S S. Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems. Chinese physics , 2006, 15(8): 1819-1823
doi: 10.1088/1009-1963/15/8/032
20 Jian S S, Zhao Y C, Wei D P. Dispersion compensation experimental on 19 ps pulse width over 133 km single mode fiber with tunable chirp and wavelength gratings. Science in China E: Technological Sciences , 1999, 42(2): 165-170
doi: 10.1007/BF02917111
21 Liu X, Wei X, Gnauck A H, Doerr C R, Chandrasekhar S. Analysis of loss ripple and its application to the mitigation of optical filtering penalty. IEEE Photonics Technology Letters , 2005, 17(1): 82-84
doi: 10.1109/LPT.2004.837479
[1] Zhen CHAI, Xiaoyong HU, Qihuang GONG. Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film[J]. Front. Optoelectron., 2020, 13(1): 4-11.
[2] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[3] Shaomin LI, Xiaoying LIU, Chong LIU. FBG sensing temperature characteristic and application in oil/gas down-hole measurement[J]. Front Optoelec Chin, 2009, 2(2): 233-238.
[4] Changkui HU, Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Front Optoelec Chin, 2009, 2(2): 187-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed