Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 368-378    https://doi.org/10.1007/s12200-009-0026-8
RESEARCH ARTICLE
New progress of mm-wave radio-over-fiber system based on OFM
Rujian LIN(), Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China
 Download: PDF(568 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents an overview on new progresses of millimeter wave (mm-wave) radio-over-fiber (RoF) system based on mm-wave generation by optical frequency multiplication (OFM), including generation of high-order optical side modes by optical modulation using dual-drive Mach-Zehnder modulator (DD-MZM) and enhancement of high-order optical side mode induced by selective amplification due to stimulated Brillouin scattering (SBS). The paper describes OFM by using DD-MZM in principle and verifies it in an experimental bidirectional 40 GHz RoF system. SBS amplification enhances the generated information-bearing mm-wave in downlink and also helps in producing a pure reference mm-wave for radio frequency-intermediate frequency (RF-IF) down-conversion in uplink. These efforts pushed the OFM technology of mm-RoF systems to achieve more and more feasibility and cost-effectiveness.

Keywords networks      optical communications      radio-over-fiber (RoF) system      optical frequency multiplication (OFM)      Mach-Zehnder modulator (MZM)      self-heterodyne      stimulated Brillouin scattering (SBS)      free spectrum range (FSR)      millimeter wave (mm-wave)     
Corresponding Author(s): LIN Rujian,Email:rujianlin@vip.sina.com   
Issue Date: 05 December 2009
 Cite this article:   
Rujian LIN,Meiwei ZHU,Zheyun ZHOU, et al. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0026-8
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/368
Fig.1  RF-driven DD-MZM
Fig.2  Basic configuration of OFM
Fig.3  Light wave spectrum after phase modulation
Fig.4  Light wave spectrum after phase-intensity conversion
Fig.5  Photocurrent spectrum after self-heterodyning
Fig.6  Bidirectional 38/40 GHz RoF system based on OFM using dual-electrode MZM (demod: demodulator; pre-amp: pre-amplifier)
Fig.7  Optical spectrum for single arm of MZM driven by+24 dBm
Fig.8  Optical spectrum for single arm of MZM driven by+27 dBm
Fig.9  Optical spectrum for dual arms of MZM driven by+27 dBm
Fig.10  Spectrum of PD output at point C
Fig.11  Spectrum of receiver output at point D
Fig.12  Spectrum of 38 GHz BPSK at point D
Fig.13  Spectrum of 40 GHz signal at point E
Fig.14  Spectrum of 2 GHz BPSK at point I
Fig.15  Waveform of output 100 Mbps data
Fig.16  Diagram of modulation scheme (PC: polarization controller)
Fig.17  Stokes spectrum of SBS over optical sideband
Fig.18  RF spectrum of photocurrent
Fig.19  Curves of Bessel functions
Fig.20  Bidirectional RoF system setup
Fig.21  Optical signal spectrum with the 7 th side mode SBS-amplified
Fig.22  Spectrum of generated mm-wave by OFM
1 Gliese U, Neilsen T N, Bruun M, Christensen E L, Stubkjzr K E, Lindgren S, Broberg B. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers. IEEE Photonics Technology Letters , 1992, 4(8): 936–938
doi: 10.1109/68.149915
2 Noel L, Moodie D G, Marcenac D D, Westbrook L D, Nesset D. Novel techniques for high-capacity 60-GHz fiber-radio transmission systems. IEEE Transactions on Microwave Theory and Techniques , 1997, 45(8): 1416–1423
doi: 10.1109/22.618445
3 Braun R P, Grosskopf G, Rohde D, Schmidt F. Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking. IEEE Photonics Technology Letters , 1998, 10(5): 728–730
doi: 10.1109/68.669405
4 Ohno T, Sato K, Fukushima S, Doi Y, Matsuoka Y. Application of DBR mode-locked lasers in millimeter-wave fiber-radio system. Journal of Lightwave Technology , 2000, 18(1): 44–49
doi: 10.1109/50.818905
5 Ogusu M, Inagaki K, Mizuguchi Y, Ohira T.βCarrier generation and data transmission on millimeter-wave bands using two-mode locked Fabry-Perot slave lasers. IEEE Transactions on Microwave Theory and Techniques , 2003, 51(2): 382–391
doi: 10.1109/TMTT.2002.807845
6 Taniguchi T, Sakurai N. An optical/electrical two-step heterodyne for wideband 60 GHz radio-on-fiber access. In: Proceedings of Optical Fiber Communication Conference . 2004, FE1
7 O’Reilly J J, Lane P M, Heidemann R, Hofstetter R. Optical generation of very narrow linewidth millimeter wave signals. Electronics Letters , 1992, 28(25): 2309–2311
8 Schmuck H. Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion. Electronics Letters , 1995, 31(21): 1848–1849
doi: 10.1049/el:19951281
9 Rolf H, Harald S, Rolf H. Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation. IEEE Transactions on Microwave Theory and Techniques , 1995, 43(9): 2263–2269
doi: 10.1109/22.414574
10 Gliese U, Norskov S, Nielson T N. Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Transactions on Microwave Theory and Techniques , 1996, 44(10): 1716–1724
doi: 10.1109/22.538964
11 Smith G H, Novak D, Ahmed Z. Techniques for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electronics Letters , 1997, 33(1): 74–75
doi: 10.1049/el:19970066
12 Park J, Sorin W V, Lau K Y. Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission. Electronics Letters , 1997, 33(6): 512–513
doi: 10.1049/el:19970325
13 Kang H S, Choi W Y. CMOS-compatible 60 GHz harmonics optoelectronic mixer. In: Proceedings of IEEE/MTT-S International Microwave Symposium . 2007, 233–236
14 Choi W Y, Kim J Y. Technologies for fiber-fed 60 GHz wireless systems. In: Proceedings of Optical Fiber Communication Conference (OFC) . 2007, OWN-1
15 Koonen T, Ng’oma A, Smulders P, Van Den Boom H,βMonroy I T, Khoe G D. In-house networks using multimode polymer optical fiber for broadband wireless services. Photonic Network Communications , 2003, 5(2): 177–187
doi: 10.1023/A:1022172511450
16 Koonen T, Ng’oma A, Larrode M G, Huijskens F, Monroy I T, Khoe G D. Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks. In: Proceedings of European Conference on Optical Communication . 2004, 120–123
17 Larrode M G, Koonen A M J, Olmos J J V, Verdurmen E J M, Turkiewicz J P. Dispersion tolerant radio-over-fibre transmission of 16 and 64 QAM radio signals at 40 GHz. Electronics Letters , 2006, 42(15): 872–874
doi: 10.1049/el:20061311
18 Xiu M L, Lin R J. Report on 40 GHz-RoF bidirectional transmission experiment system with pilot tone. In: Proceedings of Conference on Lasers and Electro-Optics/Pacific Rim . 2007, 493–494
19 Shen Y C, Zhang X M, Chen K S. Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering. IEEE Photonics Technology Letters , 2005, 17(6): 1277–1279
doi: 10.1109/LPT.2005.846491
20 Park C S, Lee C G, Park C S. Photonic frequency upconversion based on stimulated Brillouin scattering. IEEE Photonics Technology Letters , 2007, 19(10): 777–779
doi: 10.1109/LPT.2007.895904
21 Chen H S, Lin R J, Ye J J. A scheme of yielding tunable millimeter-wave based on stimulated Brillouin scattering. In: Proceedings of China-Japan Joint Microwave Conference . 2008, 591–594
[1] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[2] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[3] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[4] Yiqun WANG, Li PEI, Song GAO, Jun HAO, Sijun WENG. Review on photonic method for generating optical triangular pulses[J]. Front Optoelec, 2013, 6(2): 127-133.
[5] Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Front Optoelec, 2013, 6(1): 46-56.
[6] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed