Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (2) : 187-191    https://doi.org/10.1007/s12200-009-0027-7
RESEARCH ARTICLE
Polarization characteristics of subwavelength aluminum wire grating in near infrared
Changkui HU1,2(), Deming LIU1
1. College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. School of Science, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(127 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rigorous coupled wave analysis (RCWA) was used to investigate the polarization characteristics of subwavelength aluminum wire grating in near infrared. Upon exposure to the atmosphere, a layer of Al2O3 forms rapidly on the aluminum wires, so the effect of metal oxide layers on the polarization properties is modeled and analyzed. It is shown that subwavelength aluminum wire grating with oxide layers forming on the wires still offers excellent polarization properties. As the thickness of the oxide layer increases, the transmission coefficient increases, but the extinction ratio decreases. In addition, a magnesium fluoride (MgF2) layer was proposed to deposit between the aluminum wires and the substrate to enhance transmission coefficient. The theoretical research shows that subwavelength aluminum grid grating has high transmission coefficient and extinction ratio in near infrared, as well as uniform performance with wide variations in the angle of incidence. These features with their small size make it desirable for use in optical communication and allow more compact component designs.

Keywords integrated optics      subwavelength gratings      polarization-sensitive devices      rigorous coupled wave analysis (RCWA)     
Corresponding Author(s): HU Changkui,Email:hck@whut.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Changkui HU,Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Front Optoelec Chin, 2009, 2(2): 187-191.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0027-7
https://academic.hep.com.cn/foe/EN/Y2009/V2/I2/187
Fig.1  Schematic of subwavelength aluminum wire grating
Fig.2  Modeling of oxide layer
Fig.3  Effect of oxide on polarization properties of a subwavelength aluminum wire grating at normal incidence. (a) Extinction spectrum; (b) TM transmission spectrum
Fig.4  TM transmission and extinction ratio as a function of oxide layer thickness, normal incidence, and wavelength of incident light is 1550 nm
Fig.5  TM transmission and extinction ratio as a function of incident angle (Λ=140 nm, =140 nm, =5 nm, =75 nm, normal incidence, and wavelength of incident light is 1550 nm)
Fig.6  Schematic of subwavelength aluminum wire grating with an additional magnesium fluoride layer
Fig.7  Effect of MgF layer on polarization properties of a subwavelength aluminum wire grating (Λ=140 nm, =140 nm, =5 nm, =75 nm, and normal incidence). (a) Extinction spectrum; (b) TM transmission spectrum
1 Southwell W H. Pyramid-array surface-relief structure producing antireflection index matching on optical surfaces. Journal of the Optical Society of America A , 1991, 8(3): 549-553
doi: 10.1364/JOSAA.8.000549
2 Motamedi M E, Southwell W H. Antireflection surfaces in silicon using binary optical technology. Applied Optics , 1992, 31(22): 4371-4376
doi: 10.1364/AO.31.004371
3 Smith R E, Warren M E, Wendt J R, Vawter G A. Polarization-sensitive subwavelength antireflection surfaces on semiconductor for 975 nm. Optics Letters , 1996, 21(15): 1201-1203
doi: 10.1364/OL.21.001201
4 Santos J M, Bernardo L M. Antireflection structure with use of multilevel subwavelength zero-order gratings. Applied Optics , 1997, 36(34): 8935-8938
doi: 10.1364/AO.36.008935
5 Zhou L, Liu W, Liu Q, Zhang L, Yang T. A novel nano-optics polarization beam splitter/combiner for telecom applications. Proceedings of SPIE , 2005, 5623: 248-253
doi: 10.1117/12.575044
6 Schnabel B, Kley E B, Wyrowski F. Study on polarizing visible light by subwavelength-period metal-stripe gratings. Optical Engineering , 1999, 38(2): 220-226
doi: 10.1117/1.602257
7 Yu Z, Deshpande P, Wu W, Wang J, Chou S Y. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography. Applied Physics Letters , 2000, 77(7): 927-929
doi: 10.1063/1.1288674
8 Wang J J, Zhang W, Deng X G, Deng J D, Liu F, Sciortino P, Chen L. High-performance nanowire-grid polarizers. Optics Letters , 2005, 30(2): 195-197
doi: 10.1364/OL.30.000195
9 Zhang L, Li C F, Li J, Zhang F, Shi L N. Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication. Journal of Optoelectronics and Advanced Materials , 2006, 8(2): 847-850
10 Tamada H, Doumuki T, Yamaguchi T, Matsumoto S. Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band. Optics Letter s, 1997, 22(6): 419-421
doi: 10.1364/OL.22.000419
11 Johnson J H. Wire grid polarizers for visible wavelengths. Dissertation for the Doctoral Degree . Rochester: University of Rochester, 2003, 35-58
12 Palik E D. Handbook of Optical Constants of Solids. Orlando: Academic Press, 1985, 286
13 Moharam M G, Gaylord T K. Diffraction analysis of dielectric surface-relief gratings. Journal of the Optical Society of America , 1982, 72(10): 1385-1392
doi: 10.1364/JOSA.72.001385
14 Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of metallic surface-relief gratings. Journal of the Optical Society of America , 1986, 3(11): 1780-1787
doi: 10.1364/JOSAA.3.001780
15 Moharam M G, Grann E B, Pommet D A, Gaylord T K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America A , 1995,12(5): 1068-1076
doi: 10.1364/JOSAA.12.001068
16 Hceht E, Zajak A. Optics. 3rd ed. Massachusetts: Addison-Wesley, 1998, 335–337
17 Flory F, Escoubas L, Lazarids B. Artificial anisotropy and polarizing filters. Applied Optics , 2002, 41(16): 3332-3335
doi: 10.1364/AO.41.003332
[1] Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Front. Optoelectron., 2020, 13(2): 129-138.
[2] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[3] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[4] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[5] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[6] Kambiz ABEDI, Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
[7] Kambiz ABEDI, Habib VAHIDI. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method[J]. Front Optoelec, 2013, 6(1): 108-113.
[8] Shufeng LI, Chengren LI, Changlie SONG. Theoretical and experimental research on Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers[J]. Front Optoelec Chin, 2008, 1(3-4): 329-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed