Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (2) : 215-218    https://doi.org/10.1007/s12200-009-0043-7
RESEARCH ARTICLE
Design of distributed Raman temperature sensing system based on single-mode optical fiber
Ziheng XU, Deming LIU, Hairong LIU(), Qizhen SUN, Zhifeng SUN, Xu ZHANG, Wengang WANG
College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The distributed optical fiber temperature sensor system based on Raman scattering has developed rapidly since it was invented in 1970s. The optical wavelengths used in most of the distributed temperature optical fiber sensor system based on the Raman scattering are around from 840 to 1330?nm, and the system operates with multimode optical fibers. However, this wavelength range is not suitable for long-distance transmission due to the high attenuation and dispersion of the transmission optical fiber. A novel distributed optical fiber Raman temperature sensor system based on standard single-mode optical fiber is proposed. The system employs the wavelength of 1550?nm as the probe light and the standard communication optical fiber as the sensing medium to increase the sensing distance. This system mainly includes three modules: the probe light transmitting module, the light magnifying and transmission module, and the signal acquisition module.

Keywords optical fiber      distributed temperature sensor      Raman scattering      field-programmable gate array (FPGA)     
Corresponding Author(s): LIU Hairong,Email:hrliu@mail.hust.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Ziheng XU,Deming LIU,Hairong LIU, et al. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Front Optoelec Chin, 2009, 2(2): 215-218.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0043-7
https://academic.hep.com.cn/foe/EN/Y2009/V2/I2/215
Fig.1  Spectrum of Raman and Rayleigh scatterings
Fig.2  System construction
Fig.3  Construction of optical filter
Fig.4  Spectrum curve of Raman light and Rayleigh light
Fig.5  Spectrum curve of Stokes light
Fig.6  Spectrum curve of anti-Stokes light
1 Zhang Z X, Kim I S, Wang J F, Feng H Q, Guo N, Yu X D, Liu H L, Wu X B, Oh S, Kim Y. 10?km distributed optical fiber sensors system and application. Proceedings of SPIE , 2001, 4540: 386-390
doi: 10.1117/12.450680
2 Zhang Z X, Liu H L, Guo N. Optimum designs of 30 km distributed optical fiber Raman photon temperature sensors and measurement network. Proceedings of SPIE , 2002, 4920: 268-273
doi: 10.1117/12.481983
3 Odic R M, Jones R I, Tatam R P. Distributed temperature sensor for aeronautic applications. In: Proceedings of OFS . 2002, 459-462
[1] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[2] Xiupu ZHANG. Broadband linearization for 5G fronthaul transmission[J]. Front. Optoelectron., 2018, 11(2): 107-115.
[3] John C. CARTLEDGE. Performance of coherent optical fiber transmission systems[J]. Front. Optoelectron., 2018, 11(2): 128-133.
[4] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[5] Yanhua LUO, Binbin YAN, Jianzhong ZHANG, Jianxiang WEN, Jun HE, Gang-Ding PENG. Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Front. Optoelectron., 2018, 11(1): 37-52.
[6] Shaghik ATAKARAMIANS, Tanya M. MONRO, Shahraam AFSHAR V.. Dipole-fiber system: from single photon source to metadevices[J]. Front. Optoelectron., 2018, 11(1): 30-36.
[7] Qi MO,Cheng DU,Wei CHEN,Yili KE,Tao ZHANG,Rushan CHEN. Review on developments of novel specialty fibers: performance, application and process[J]. Front. Optoelectron., 2014, 7(3): 338-347.
[8] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[9] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[10] Dagong JIA, Haiwei ZHANG, Zhe JI, Neng BAI, Guifang LI. Optical fiber amplifiers for space-division multiplexing[J]. Front Optoelec, 2012, 5(4): 351-357.
[11] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
[12] Xinwan LI, Zehua HONG, Xiaomeng SUN. Photonic nano-device for optical signal processing[J]. Front Optoelec Chin, 2011, 4(3): 254-263.
[13] Zhiyong BAO, Li ZHANG, Yucheng WU. Silver nanoparticles and silver molybdate nanowires complex for surface-enhanced Raman scattering substrate[J]. Front Optoelec Chin, 2011, 4(2): 166-170.
[14] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
[15] Yan LIU, Bo LIU, Hao ZHANG, Yinping MIAO. Mach-Zehnder interferometer based on core-cladding mode coupling in single mode fibers[J]. Front Optoelec Chin, 2010, 3(4): 364-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed