Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (3) : 259-263    https://doi.org/10.1007/s12200-009-0048-2
RESEARCH ARTICLE
Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier
Yin ZHANG, Xinliang ZHANG(), Xi HUANG, Cheng CHENG
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(150 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical buffer is a key component in all optical information processing systems. Slow light at room temperature via four-wave mixing (FWM) in semiconductor optical amplifier (SOA) is experimentally investigated. Time delay of 0.40 ns is achieved for a sinusoidal modulation signal at 0.1 GHz, corresponding to a delay bandwidth product (DBP) of 0.04. Factors that affect the experimental results are discussed. It is found out that the variable optical delay via FWM in SOA can be controlled either electrically by changing the SOA bias or optically by varying the pump power or pump-probe detuning.

Keywords optical communication      slow light      four-wave mixing (FWM)      semiconductor optical amplifier (SOA)     
Corresponding Author(s): ZHANG Xinliang,Email:xlzhang@mail.hust.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Xinliang ZHANG,Xi HUANG,Cheng CHENG, et al. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0048-2
https://academic.hep.com.cn/foe/EN/Y2009/V2/I3/259
Fig.1  Experimental setup to investigate tunable delay in SOA: PD (SHF 47100A O/E convertor, bandwidth: 40 GHz, center operating wavelength at 1550 nm); OSA: oscilloscope (Tektronix TDS 3052B, bandwidth: 500 MHz); RF-SA: radio frequency spectrum analyzer (Anritsu MS2667C, 9 kHz-30 GHz); OSA: optical spectrum analyzer (Anritsu MS9710C, 600-1750 nm); and radio frequency signal generator (Agilent E8247C, 250 kHz-20 GHz).
Fig.2  Oscilloscope time traces of modulated probe signal (0.1 GHz) for different detuning values (A signal: a sinusoidal modulated signal at 0.1 GHz from signal generator, as a reference signal; B, C, D signal: all sinusoidal modulated signal at 0.1 GHz, detected modulated signal for detuning of -6.66 GHz, -23. 82 GHz and -28.98 GHz, respectively).
Fig.3  Optical spectrum for various pump-probe detuning. (a) Optical spectrum as detuning is -6.66 GHz; (b) optical spectrum as detuning is -23.82 GHz; (c) optical spectrum as detuning is -28.98 GHz
Fig.4  Beating frequency spectrum for different pump-probe detuning. (a) Beating frequency spectrum as detuning is -6.66 GHz; (b) beating frequency spectrum as detuning is -23.82 GHz; (c) beating frequency spectrum as detuning is -28.98 GHz
1 Hau L V, Harris S E, Dutton Z, Behroozi C H. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature , 1999, 397(6720): 594—598
doi: 10.1038/17561
2 Bigelow M S, Lepeshkin N N, Boyd R W. Superluminal and slow light propagation in a room temperature solid. Science , 2003, 301(5630): 200—202
doi: 10.1126/science.1084429
3 Chang S W, Chuang S L, Ku P C, Chang-Hasnian C J, Palinginis P, Wang H L. Slow light using excitonic population oscillation. Physical Review B , 2004, 70(23): 235333
doi: 10.1103/PhysRevB.70.235333
4 Ku P C, Sedgwick F, Chang-Hasnain C J, Palinginis P, Li T, Wang H L, Chang S W, Chuang S L. Slow light in semiconductor quantum wells. Optics Letters , 2004, 29(19): 2291—2293
doi: 10.1364/OL.29.002291
5 Minin S, Fisher M R, Chuang S L. Current-controlled group delay using a semiconductor Fabry-Perot amplifier. Applied Physics Letters , 2004, 84(17): 3238—3240
doi: 10.1063/1.1715144
6 Vlasov Y A, O’Boyle M, Hamann H F, McNab S J. Active control of slow light on a chip with photonic crystal waveguides. Nature , 2005, 438(7064): 65—69
doi: 10.1038/nature04210
7 Okawachi Y, Bigelow M S, Sharping J E, Zhu Z M, Schweinsberg A, Gauthier D J, Boyd R W, Gaeta A L. Tunable all-optical delays via Brillouin slow light in an optical fiber. Physical Review Letters , 2005, 94(15): 153902
doi: 10.1103/PhysRevLett.94.153902
8 Uskov A V, Chang-Hasnain C J. Slow and superluminal light in semiconductor optical amplifiers. Electronics Letters , 2005, 41(16): 55—56
doi: 10.1049/el:20052060
9 Uskov A V, Sedgwick F, Chang-Hasnain C J. Delay limit of slow light in semiconductor optical amplifiers. IEEE Photonics Technology Letters , 2006, 18(6): 731—733
doi: 10.1109/LPT.2006.871147
10 Pesala B, Chen Z Y, Uskov A V, Chang-Hasnain C J. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers. Optics Express , 2006, 14(26): 12968—12975
doi: 10.1364/OE.14.012968
11 Su H, Kondratko P, Chuang S L. Variable optical delay using population oscillation and four-wave mixing in semiconductor optical amplifiers. Optics Express , 2006, 14(11): 4800—4807
doi: 10.1364/OE.14.004800
12 Agrawal G P. Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. Journal of the Optical Society America B , 1988, 5(1): 147—159
doi: 10.1364/JOSAB.5.000147
[1] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[2] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[3] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[4] Qingshan JIANG, Ciling ZENG, Fengqiang GU, Ming ZHAO. Dynamic spot tracking system based on 2D galvanometer in free space optical communication for short distance[J]. Front. Optoelectron., 2017, 10(2): 174-179.
[5] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[6] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[7] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[8] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[9] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[10] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[11] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[12] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[13] Kambiz ABEDI, Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
[14] Hadi GHORBANPOUR, Somaye MAKOUEI. 2-channel all optical demultiplexer based on photonic crystal ring resonator[J]. Front Optoelec, 2013, 6(2): 224-227.
[15] Kambiz ABEDI, Habib VAHIDI. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method[J]. Front Optoelec, 2013, 6(1): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed