Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 442-445    https://doi.org/10.1007/s12200-009-0059-z
RESEARCH ARTICLE
InGaN/GaN multi-quantum-well-based light-emitting and photodetective dual-functional devices
Cao MIAO(), Hai LU, Dunjun CHEN, Rong ZHANG, Youdou ZHENG
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Department of Physics, Nanjing University, Nanjing 210093, China
 Download: PDF(105 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, we fabricated and characterized an InGaN/GaN multi-quantum-well (MQW)-based p-n junction photodetector (PD) for voltage-selective light-emitting and photo-detective applications. The photodetector exhibits a cutoff wavelength at around 460 nm which is close to its electroluminescence (EL) peak position. The rejection ratio was determined to be more than three orders of magnitude. Under zero bias, the responsivity of the device peaks at 371 nm, with a value of 0.068 A/W, corresponding to a 23% quantum efficiency. The overall responsivity gradually rises as a function of reverse bias, which is explained by the enhanced photocarrier collection efficiency.

Keywords GaN      multi-quantum-well (MQW)      photodetector (PD)      light emitting diode (LED)     
Corresponding Author(s): MIAO Cao,Email:miaocao321@163.com   
Issue Date: 05 December 2009
 Cite this article:   
Hai LU,Dunjun CHEN,Rong ZHANG, et al. InGaN/GaN multi-quantum-well-based light-emitting and photodetective dual-functional devices[J]. Front Optoelec Chin, 2009, 2(4): 442-445.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0059-z
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/442
Fig.1  Typical - characteristic of a 1 mm×1 mm InGaN/GaN MQW-based p-n junction photodetector (top and bottom-right insets show a cross-sectional schematic and a top-view image of fabricated device, respectively)
Fig.2  EL spectrum under forward bias ( = 50 mA, dashed line) and spectral response of PD under zero reverse bias (solid line)
Fig.3  Responsivity curves of PD under different reverse bias voltages
1 Iwaya M, Terao S, Sano T, Takanami S, Ukai T, Nakamura R, Kamiyama S, Amano H, Akasaki I. High-efficiency GaN/AlxGa1-xN multi-quantum-well light emitter grown on low-dislocation density AlxGa1-xN. Physica Status Solidi A: Applied Research , 2001, 188(1): 117–120
doi: 10.1002/1521-396X(200111)188:1<117::AID-PSSA117>3.0.CO;2-X
2 Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K. Present status of InGaN/GaN/AlGaN-based laser diodes. Journal of Crystal Growth , 1998, 189-190: 820–825
doi: 10.1016/S0022-0248(98)00302-9
3 Ponce F A, Bour D P. Nitride-based semiconductors for blue and green light-emitting devices. Nature , 1997, 386(6623): 351–359
doi: 10.1038/386351a0
4 Munoz E, Monroy E, Pau J L, Calle F, Omnes F, Gibart P. III nitrides and UV detection. Journal of Physics: Condensed Matter , 2001, 13(32): 7115–7137
doi: 10.1088/0953-8984/13/32/316
5 Zhang S K, Wang W B, Yun F, He L, Morko? H, Zhou X, Tamargo M, Alfano R R. Backilluminated ultraviolet photodetector based on GaN/AlGaN multiple quantum wells. Applied Physics Letters , 2002, 81(24): 4628–4630
doi: 10.1063/1.1527994
6 Chang P C, Yu C L. InGaN/GaN multi-quantum-well ultraviolet photosensors by capping an unactivated Mg-doped GaN layer. Applied Physics Letters , 2007, 91(14): 141113
doi: 10.1063/1.2793504
7 Jhou Y D, Chen C H, Chuang R W, Chang S J, Su Y K, Chang P C, Chen P C, Hung H, Wang S M, Yu C L. Nitride-based light emitting diode and photodetector dual function devices with InGaN/GaN multiple quantum well structures. Solid-State Electronics , 2005, 49(8): 1347–1351
doi: 10.1016/j.sse.2005.06.002
8 Wu J, Walukiewicz W, Yu K M, Shan W, Ager III J W, Haller E E, Lu H, Schaff W J, Metzger W K, Kurtz S. Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system. Journal of Applied Physics , 2003, 94(10): 6477–6482
doi: 10.1063/1.1618353
9 Jani O, Ferguson I, Honsberg C, Kurtz S. Design and characterization of GaN/InGaN solar cells. Applied Physics Letters , 2007, 91(13): 132117
doi: 10.1063/1.2793180
10 Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P, Mishra U K. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Applied Physics Letters , 2008, 93(14): 143502
doi: 10.1063/1.2988894
11 Chichibu S F, Wada K, Müllh?user J, Brandt O, Ploog K H, Mizutani T, Setoguchi A, Nakai R, Sugiyama M, Nakanishi H, Korii K, Deguchi T, Sota T, Nakamura S. Evidence of localization effects in InGaN single-quantum-well ultraviolet light-emitting diodes. Applied Physics Letters , 2000, 76(13): 1671–1673
doi: 10.1063/1.126131
12 Chiou Y Z. Nitride-based p-i-n bandpass photodetectors. IEEE Electron Device Letters , 2005, 26(3): 172–174
doi: 10.1109/LED.2005.843785
[1] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[2] Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Front. Optoelectron., 2020, 13(2): 156-187.
[3] Neha JAIN, O. P. SINHA, Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
[4] Sakhawat HUSSAIN, Tasnim ZERIN, Md. Ashik KHAN. Design and simulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode[J]. Front. Optoelectron., 2017, 10(4): 370-377.
[5] Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Front. Optoelectron., 2017, 10(4): 329-352.
[6] Chong ZHAO, Qixin WAN, Jiangnan DAI, Jun ZHANG, Feng WU, Shuai WANG, Hanling LONG, Jingwen CHEN, Cheng CHEN, Changqing CHEN. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation[J]. Front. Optoelectron., 2017, 10(4): 363-369.
[7] Feng GAO, Yuchun LIU, Yan XIONG, Ping WU, Bin HU, Ling XU. Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials[J]. Front. Optoelectron., 2017, 10(2): 117-123.
[8] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[9] Xiao HU,Xingheng XIA,Lei ZHOU,Lirong ZHANG,Weijing WU. Design of compensation pixel circuit with In-Zn-O thin film transistor for active-matrix organic light-emitting diode 3D display[J]. Front. Optoelectron., 2017, 10(1): 45-50.
[10] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[11] Yangang BI,Jinhai JI,Yang CHEN,Yushan LIU,Xulin ZHANG,Yunfei LI,Ming XU,Yuefeng LIU,Xiaochi HAN,Qiang GAO,Hongbo SUN. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices[J]. Front. Optoelectron., 2016, 9(2): 283-289.
[12] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[13] Liping ZHU,Kai XU,Yanping WANG,Jiangshan CHEN,Dongge MA. High efficiency yellow fluorescent organic light emitting diodes based on m-MTDATA/BPhen exciplex[J]. Front. Optoelectron., 2015, 8(4): 439-444.
[14] Jiayun XIANG,Han NIE,Yibin JIANG,Jian ZHOU,Hoi Sing KWOK,Zujin ZHAO,Ben Zhong TANG. Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence[J]. Front. Optoelectron., 2015, 8(3): 274-281.
[15] Mingzhang DENG,Weina SHI,Chen ZHAO,Bingbing CHEN,Yan SHEN. ITO surface modification for inverted organic photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 269-273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed