Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 419-424    https://doi.org/10.1007/s12200-009-0061-5
RESEARCH ARTICLE
Targets detection and discrimination using laser polarimetric imaging
Xuguo ZHANG(), Yuesong JIANG, Yiming ZHAO
School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
 Download: PDF(243 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laser polarimetric imaging can offer additional information of targets compared with the traditional intensity imaging method. It can be used to detect camouflaged targets and distinguish targets with the same reflectivity, which cannot be realized using the traditional imaging method. Based on the dual-rotation retarder technique, we have established a setup to acquire different polarization state images. The polarization degree of the target can be calculated and encoded to get the polarization degree image. Preliminary results and error analysis have been given to validate the system. The results show that the system has rational arrangement and can realize the function of target detection and discrimination. Also, the polarization degree change and spectrum changes have little influence on the system.

Keywords laser polarimetric imaging      polarization degree      spectrum change     
Corresponding Author(s): ZHANG Xuguo,Email:zhang_xuguo@ee.buaa.edu.cn   
Issue Date: 05 December 2009
 Cite this article:   
Xuguo ZHANG,Yuesong JIANG,Yiming ZHAO. Targets detection and discrimination using laser polarimetric imaging[J]. Front Optoelec Chin, 2009, 2(4): 419-424.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0061-5
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/419
Fig.1  Schematic of experimental setup
Fig.2  Photo of keys in grass background
Fig.3  Experimental results. (a) Polarization parallel image; (b) polarization orthogonal image; (c) intensity coded image; (d) polarization degree coded image
Fig.4  Photo of a coin and two letters, one is written with pen (the one above the coin) and the other is written with pencil (the one under the coin)
Fig.5  Experimental results. (a) Polarization parallel image; (b) polarization orthogonal image; (c) intensity coded image; (d) polarization degree coded image
Fig.6  Simulation of spectrum changes of light when passing through laser polarimetric imaging system. (a) Spectrum change caused by aperture; (b) spectrum change caused by lens; (c) spectrum change when light propagating in free space for a short distance
1 Tyo J S, Goldstein D L, Chenault D B, Shaw J A. Review of passive imaging polarimetry for remote sensing applications. Applied Optics , 2006, 45(22): 5453-5469
doi: 10.1364/AO.45.005453
2 Sassen K. Polarization in lidar: a review. In: Shaw J A, Tyo J S, eds. Polarization Science and Remote Sensing. Proceedings of SPIE, Vol. 5158. SPIE , 2003, 151-160
3 Chang P C Y, Walker J G, Hopcraft K I, Ablitt B, Jakeman E. Polarization discrimination for active imaging in scattering media. Optics Communications , 1999, 159(1-3): 1-6
doi: 10.1016/S0030-4018(98)00589-6
4 Chun C S L, Sadjadi F A. Target recognition study using polarimetric laser radar. In: Sadjadi F A, eds. Automatic Target Recognition XIV. Proceedings of SPIE, Vol. 5426. SPIE , 2004, 274-284
5 Yao G. Differential optical polarization imaging in turbid media with different embedded objects. Optics Communications , 2004, 241(4-6): 255-261
doi: 10.1016/j.optcom.2004.07.026
6 Jacques S L, Roman J R, Lee K. Imaging superficial tissues with polarized light. Lasers in Surgery and Medicine , 2000, 26(2): 119-129
doi: 10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
7 Yaroslavsky A N, Neel V, Anderson R R. Fluorescence polarization imaging for delineating nonmelanoma skin cancers. Optics Letters , 2004, 29(17): 2010-2012
doi: 10.1364/OL.29.002010
8 Wang M. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing. Applied Optics , 2006, 45(35): 8951-8963
doi: 10.1364/AO.45.008951
9 Tan S X, Narayanan R M. Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing. Applied Optics , 2004, 43(11): 2360-2368
doi: 10.1364/AO.43.002360
10 Bock R D, Cathcart J M. Spectral polarization signature analysis and modeling in the infrared for the detection of landmines. In: Goldstein D H, Chenault D B, eds. Polarization: Measurement, Analysis, and Remote Sensing VI. Proceedings of SPIE, Vol. 5432. SPIE , 2004, 116-126
11 Richmond R D, Evans B J. Polarimetric imaging laser radar (PILAR) program. In: Advanced Sensory Payloads for UAV Meeting Proceedings RTO-MP-SET-092. Neuilly-sur-Seine: RTO , 2005, 19–11–19–14
12 Travis L. EOSP: Earth Observing Scanning Polarimeter. EOS Reference Handbook . Washington D.C.: NASA, 1995, 127-129
13 Deuze J L, Breon F M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanre D. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. Journal of Geophysical Research , 2001, 106(D5): 4913-4926
doi: 10.1029/2000JD900364
14 Winker D, Vaughan M, Hunt B. The CALIPSO mission and initial results from CALIOP. In: Singh U N, Itabe T, Rao D N, eds. Lidar Remote Sensing for Environmental Monitoring VII. Proceedings of SPIE, Vol. 6409. SPIE , 2006, 640902
15 Breugnot S, Clemenceau P. Modeling and performances of a polarization active imager at λ =806 nm. Optical Engineering , 2000, 39(10): 2681-2688
doi: 10.1117/1.1286140
16 Alouini M, Goudail F, Refregier P, Grisard A, Lallier E, Dolfi D. Multispectral polarimetric imaging with coherent illumination: towards higher image contrast. In: Goldstein D H, Chenault D B, eds. Polarization: Measurement, Analysis, and Remote Sensing VI. Proceedings of SPIE, Vol. 5432. SPIE , 2004, 133-144
17 Hors L L, Hartemann P, Breugnot S. Multispectral polarization active imager in the visible band. In: Kamerman G W, Singh U N, Werner C, Molebny V V, eds. Laser Radar Technology and Applications V. Proceedings of SPIE, Vol. 4035 . SPIE, 2000, 380-389
18 Collett E. Polarized Light: Fundamentals and Applications. New York: Marcel Dekker, Inc., 1993
19 Zhang X G, Jiang Y S, Lu X M, Shen L. Implementation and imaging of a modified laser polarimetric remote sensing system. In: Fang J C, Wang Z Y, eds. Seventh International Symposium on Instrumentation and Control Technology: Sensors and Instruments, Computer Simulation, and Artificial Intelligence. Proceedings of SPIE, Vol. 7127 . SPIE, 2008, 712705
20 Zhang X G, Jiang Y S, Lu X M. Adjustment of optical elements and error analysis for laser remote sensing polarization imaging system. Acta Optica Sinica , 2008, 28(6): 1191-1196 (in Chinese)
doi: 10.3788/AOS20082806.1191
21 Zhang X G, Jiang Y S, Zhao Y M. Application of polarimetric imaging in target detection. Opto-Electronic Engineering , 2008, 35(12): 59-62 (in Chinese)
22 Lu X M, Jiang Y S, Rao W H. Polarization analysis of the Cassegrain telescope used for the lidar polarization active imaging system. Acta Optica Sinica , 2007, 27(10): 1771-1774 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed