Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 410-413    https://doi.org/10.1007/s12200-009-0067-z
RESEARCH ARTICLE
Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes
Zhifeng LIN, Chunqing GAO(), Mingwei GAO, Yunshan ZHANG, Lingni ZHU, Yan ZHENG
School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(185 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents the experimental results of the monolithic Tm:YAG nonplanar ring oscillator (NPRO) pumped by two kinds of laser diodes with different pumping spot sizes. By longitudinal pumping in continuous-wave operation, a single-frequency output power of 404 mW was obtained at room temperature, with a slope efficiency of 48.2%. The influences of the pumping spot sizes on the beam properties were also discussed.

Keywords nonplanar ring oscillator (NPRO)      Tm:YAG laser      laser diode      pumping spot size     
Corresponding Author(s): GAO Chunqing,Email:gao@bit.edu.cn   
Issue Date: 05 December 2009
 Cite this article:   
Zhifeng LIN,Chunqing GAO,Mingwei GAO, et al. Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes[J]. Front Optoelec Chin, 2009, 2(4): 410-413.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0067-z
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/410
Fig.1  Composite cavity Tm:YAG NPRO laser end-pumped by two polarization-coupled continuous-wave laser diode (LD: laser diode)
Fig.2  Output powers of Tm:YAG NPRO laser as a function of pump power
Fig.3  Wavelength of Tm:YAG NPRO laser
Fig.4  Transmitted signal from scanning FPI showing single-frequency operation (a) and multimode operation (b) in different laser powers
1 Henderson S W, Suni P J M, Hale C P, Hannon S M, Magee J R, Bruns D L, Yuen E H. Coherent laser radar at 2 μm using solid-state lasers. IEEE Transactions on Geoscience and Remote Sensing , 1993, 31(1): 4-15
doi: 10.1109/36.210439
2 Amzajerdian F, Kavaya M J, Singh U, Yu J R. 2-micron coherent Doppler lidar for space-based global wind field mapping. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) . 2003, 1: 515-517
3 Galzerano G, Sani E, Toncelli A, Taccheo S, Tonelli M, Laporta P. Experimental investigation of the 2.1-μm single-mode Tm-Ho:KYF laser. Applied Physics B: Lasers and Optics , 2004, 78(6): 733-736
doi: 10.1007/s00340-004-1506-6
4 Gatti D, Galzerano G, Toncelli A, Tonelli M, Laporta P. Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers. Applied Physics B: Lasers and Optics , 2007, 86(2): 269-273
doi: 10.1007/s00340-006-2450-4
5 Lin Z, Gao C, Gao M, Zhang Y, Weber H. Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters. Applied Physics B: Lasers and Optics , 2009, 94(1): 81-84
doi: 10.1007/s00340-008-3303-0
6 Kubo T S, Kane T J. Diode-pumped lasers at five eye-safe wavelengths. IEEE Journal of Quantum Electronics , 1992, 28(4): 1033-1040
doi: 10.1109/3.135225
7 Svelto C, Freitag I. Room-temperature Tm:YAG ring laser with 150 mW single-frequency output power at 2.02 μm. Electronics Letters , 1999, 35(2): 152-153
doi: 10.1049/el:19990097
[1] Yuchen SONG, Yunfeng CHEN, Jianguo XIN, Teng SUN. Two-dimensional beam shaping and homogenization of high power laser diode stack with rectangular waveguide[J]. Front. Optoelectron., 2019, 12(3): 311-316.
[2] Yang LIU, Hengli ZHANG, Ying YAN, Huaijin ZHANG, Jingliang HE, Jianguo XIN. A 123 W Nd:YVO4 slab laser with high beam quality output[J]. Front Optoelec Chin, 2009, 2(4): 407-409.
[3] Xu ZHANG, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Ziheng XU, Wengang WANG. High-power EDFA applied in distributed optical fiber Raman temperature sensor system[J]. Front Optoelec Chin, 2009, 2(2): 210-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed