Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 355-361    https://doi.org/10.1007/s12200-009-0068-y
REVIEW ARTICLE
Challenges of spatial 3D display techniques to optoelectronics
Jiang WU, Xu LIU()
State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
 Download: PDF(245 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the development of flat panel display techniques and digital image processing techniques, the data processing ability progresses so greatly, and it makes the three-dimensional display (3D display) possible. Recently, the 3D display technique develops so fast, it changes totally the traditional 3D viewing effect and makes 3D display become a possible technique in our daily life. In this paper, the different 3D techniques will be reviewed, and much more focus on the real spatial 3D display techniques, especially the challenges of the high-quality spatial 3D display to the optoelectronics will be analyzed, which will be the sources for the future ideal 3D display technique.

Keywords spatial display      three-dimensional display (3D display)      holographic display      optoelectronics     
Corresponding Author(s): LIU Xu,Email:liuxu@zju.edu.cn   
Issue Date: 05 December 2009
 Cite this article:   
Jiang WU,Xu LIU. Challenges of spatial 3D display techniques to optoelectronics[J]. Front Optoelec Chin, 2009, 2(4): 355-361.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0068-y
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/355
Fig.1  Schematic of FELIX 3D display
Fig.2  Schematic of Perspecta 3D system (DLP: digital light procession)
Fig.3  Volumetric display system based on LED panel
Fig.4  3D volumetric image reproduced by LED-based volumetric display system
Fig.5  Schematic of 360° full horizontal parallax display system
Fig.6  360° view of Beijing 2008 Olympic Mascot “Ying Ying” by full parallax display system
1 Wheatstone C. Contribution to the Physiology of Vision. London: Philosophical Transaction of the Royal society of London, 1938
2 Ives F E. US Patent, 725567, 1903-04-14
3 Isono H, Yasuda M, Kusaka H, Morita T. 3D flat-panel displays without glasses. In: Proceedings of the Society for Information Display . 1990, 31(3): 263–266
4 Gabor D. Microscopy by recorded wavefronts. In: Proceedings of the Royal Society . 1949, 446–469
5 Tay S, Yamamoto M, Peyghambarian N. An updateable holographic 3-D display based on photorefractive polymers. In: Proceedings of SID International Symposium . 2008, 356
6 Parker E, Wallis P A. Three-dimensional cathode-ray tube displays. The Journal of the Institution of Electrical Engineers , 1948, 95, Part III: 371–390
7 Langhans K, Bahr D, Bezecny D, Homann D, Oltmann K, Oltmann K, Guill C, Rieper E, Ardey G. FELIX 3D display: an interactive tool for volumetric imaging. Proceedings of SPIE , 2002, 4660: 176–190
doi: 10.1117/12.468031
8 Davies N, McCormick M, Yang L. Three-dimensional imaging systems: a new development. Applied Optics , 1988, 27(21): 4520–4528
doi: 10.1364/AO.27.004520
9 Hines S P. Autostereoscopic video display with motion parallax. Proceedings of SPIE , 1997, 3012: 208–219
doi: 10.1117/12.274459
10 van Berkel C. Image preparation for 3D-LCD. Proceedings of SPIE , 1999, 3639: 84–91
doi: 10.1117/12.349368
11 Lipton L. US Patent, 6519088, 2002-2-11
12 De Zwart S T, Ijzerman W L, Dekker T, Wolter W A M. A 20" switchable auto-stereoscopic 2D/3D display. In: Proceedings of the 11th International Conference on Auditory Display .2004, 11: 1459–1460
13 Kim S S, Sohn K H, Savaljev V, Pen E F, Son J Y, Chun J H. Optical design and analysis for super multiview three-dimensional imaging system. Proceedings of SPIE , 2001, 4297: 222–226
doi: 10.1117/12.430820
14 Tay S, Blanche P A, Voorakaranam R, Tuns A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. An updatable holographic three-dimensional display. Nature , 2008, 451(7179): 694–698
doi: 10.1038/nature06596
15 Bahr D, Langhans K, Gerken M, Vogt C, Bezecny D, Homann D. Felix: a volumetric 3D laser display. Proceedings of SPIE , 1996, 2650: 265–273
doi: 10.1117/12.237011
16 Texas Instruments. The DLP DiscoveryTM 4000, 2008
17 Favalora G E, Dorval R K, Hall D M, Giovinco M, Napoli J. Volumetric three-dimensional display system with rasterization hardware. Proceedings of SPIE , 2001, 4297: 227–235
doi: 10.1117/12.430821
18 Perspecta. Actuality Systems, Inc., Burlington, MA. 2004
19 Lin Y F, Liu X, Yao Y, Zhang X J, Liu X D, Lin F C. Key factors in the design of a LED volumetric 3D display system. Proceedings of SPIE , 2005, 5632: 147–154
doi: 10.1117/12.574165
20 Xie X Y, Liu X, Lin Y F. The investigation of data voxelization for a three-dimensional volumetric display system. Journal of Optics A: Pure and Applied Optics , 2009, 11(4): 045707
doi: 10.1088/1464-4258/11/4/045707
21 Lippmann M G. Epreuves reversibles donnant la sensation du relief. Journal de Physique , 1908, 7(4): 821–825
22 Lee B. Current status of integral imaging after 100 years of history. In: Proceedings of IMID/IDMC/ASIA DISPLAY’08 , 2008, 1127–1130
23 Min S W, Hahn M, Kim J, Lee B. Three-dimensional electro-floating display system using an integral imaging method. Optics Express , 2005, 13(12): 4358–4369
doi: 10.1364/OPEX.13.004358
24 Takeichi A, Yendo T, Fujii T, Tanimoto M. A novel 3D display using two lens arrays and shift of element images. Proceedings of SPIE , 2008, 6803: 68030A
doi: 10.1117/12.765659
25 Okano F, Kawakita M, Arai J, Sasaki H, Yamashita T, Sato M, Suehiro K, Haino Y. Three-dimensional integral television using extremely high-resolution video system with 4,000 scanning lines. Proceedings of SPIE , 2007, 6778: 677805
doi: 10.1117/12.733012
26 Liao H, Iwahara M, Hata N, Dohi T. High-quality integral videography using a multiprojector. Optics Express , 2004, 12(6): 1067–1076
doi: 10.1364/OPEX.12.001067
27 Cossairt O, Travis A R, Moller C, Benton S A. Novel view sequential display based on DMD technology. Proceedings of SPIE , 2004, 5291: 273–278
doi: 10.1117/12.525888
28 Jones A, McDowall I, Yamada H, Bolas M, Debevec P. Rendering for an interactive 360° light field display. In: Proceedings of ACM SIGGRAPH’07 . 2007, 5–9
29 Yan C J, Liu X, Li H F, Xia X X, Lu H X, Zheng W T. Color three-dimensional display with omnidirection view based on a light-emitting diode projector. Applied Optics , 2009, 48(22): 4490–4495
doi: 10.1364/AO.48.004490
30 Hashimoto N, Morokawa S. Real-time electroholographic system using liquid crystal television spatial light modulators. Journal of Electronics Imaging , 1993, 2(2): 93–99
doi: 10.1117/12.136692
31 St Hilarie P, Benton S A, Lucente M, Hubel P M. Color images with the MIT holographic video display. Proceedings of SPIE , 1992, 1667: 73–84
32 Onural L, Bozdagi G, Atalar A. New high-resolution display device for holographic three-dimensional video: principles and simulations. Optical Engineering , 1994, 33(3): 835–844
doi: 10.1117/12.160973
33 Maeno K, Fukaya N, Nishikawa O, Sato K, Honda T. Electro-holographic display using 15 mega pixels LCD. Proceedings of SPIE , 1996, 2652: 15–23
doi: 10.1117/12.236065
34 Yoshikawa H, Tamai J. Holographic image compression by motion picture coding. Proceedings of SPIE , 1996, 2652: 2–9
doi: 10.1117/12.236045
35 Kreis T, Aswendt P, H?fling R. Hologram reconstruction using a digital micromirror device. Optical Engineering , 2001, 40(6): 926–933
doi: 10.1117/1.1367346
36 Ito T. Color electroholography by three colored reference lights simultaneously incident upon one hologram panel. Optics Express , 2004, 12(18): 4320–4325
doi: 10.1364/OPEX.12.004320
37 Poon T C, Akin T, Indebetouw G, Kim T. Horizontal-parallax-only electronic holography. Optics Express , 2005, 13(7): 2427–2432
doi: 10.1364/OPEX.13.002427
38 Ahrenberg L, Benzie P, Magnor M, Watson J. Computer generated holography using parallel commodity graphics hardware. Optics Express , 2006, 14(17): 7636–7641
doi: 10.1364/OE.14.007636
39 Huebschman M, Munjuluri B, Garner H. Digital micromirrors enable holographic video display. Laser Focus World , 2004, 40(5): 111–116
40 Kimura H, Uchiyama T, Yoshikawa H. Laser produced 3D display in the air. In: Proceedings of ACM SIGGRAPH’06 . 2006, 20
[1] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[2] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[3] Ran YAO,Dawei ZHANG,Bing ZOU,Jian XU. Junction temperature measurement of alternating current light-emitting-diode by threshold voltage method[J]. Front. Optoelectron., 2016, 9(4): 555-559.
[4] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[5] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed