Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 153-162    https://doi.org/10.1007/s12200-009-0077-x
Research articles
Optical monitoring of tissue viability parameters in vivo : from experimental animals to clinical applications
Avraham MAYEVSKY1,Efrat BARBIRO-MICHAELY2,
1.Mina and Everard Goodman Faculty of Life Sciences, Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel;CritiSense Ltd., Giv''at Shmu'el 54101, Israel; 2.Mina and Everard Goodman Faculty of Life Sciences, Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel;
 Download: PDF(522 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Optical monitoring of tissue physiological and biochemical parameters in real-time is a new approach and a powerful tool for better clinical diagnosis and treatment. Most of the devices available for monitoring patients in critical conditions provide information on body respiratory and hemodynamic functions. Currently, monitoring of patients at the cellular and tissue level is very rare. Real-time monitoring of mitochondrial nicotinamide adenine dinucleotide (NADH) as an indicator of intra-cellular oxygen levels started 50 years ago. Mitochondrial dysfunction was recognized as a key element in the pathogenesis of various illnesses. We developed the “CritiView”
Issue Date: 05 June 2010
 Cite this article:   
Avraham MAYEVSKY,Efrat BARBIRO-MICHAELY. Optical monitoring of tissue viability parameters in vivo : from experimental animals to clinical applications[J]. Front. Optoelectron., 2010, 3(2): 153-162.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0077-x
https://academic.hep.com.cn/foe/EN/Y2010/V3/I2/153
Marik P E, Baram M. Noninvasivehemodynamic monitoring in the intensive care unit. Critical Care Clinics, 2007, 23(3): 383―400

doi: 10.1016/j.ccc.2007.05.002
Ospina-Tascón G A, Cordioli R L, Vincent J L. What type of monitoring has been shown to improve outcomes in acutelyill patients? Intensive Care Medicine, 2008, 34(5): 800―820

doi: 10.1007/s00134-007-0967-6
Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent J L. The prognostic value of muscleStO2 in septic patients. Intensive Care Medicine, 2007, 33(9): 1549―1556

doi: 10.1007/s00134-007-0739-3
Shephard A P, Oberg P A. History ofLaser-Doppler Blood Flowmeter: Laser-Doppler Blood Flowmeter. Boston: KluwerAcademic, 1990
Batista J, Wagner J, Azadzoi K, Krane R, Siroky M. Directmeasurement of blood flow in the human bladder. Journal of Urology, 1996, 155(2): 630―633

doi: 10.1016/S0022-5347(01)66471-1
Rampil I J, Litt L, Mayevsky A. Correlated, simultaneous, multiple-wavelengthoptical monitoring in vivo of localizedcerebrocortical NADH and brain microvessel hemoglobin oxygen saturation. Journal of Clinical Monitoring, 1992, 8(3): 216―225

doi: 10.1007/BF01616779
Mayevsky A, Crowe W, Mela L. The interrelation between brain oxidativemetabolism and extracellular potassium in the unanesthetized gerbil. Neurological Research, 1980, 1(3): 213―225
Lübbers D W. Optical sensors for clinical monitoring. Acta Anaesthesiologica Scandinavica Supplementum, 1995, 39(104): 37―54

doi: 10.1111/j.1399-6576.1995.tb04254.x
Scheffler I E. A century of mitochondrial research: achievements andperspectives. Mitochondrion, 2001, 1(1): 3―31

doi: 10.1016/S1567-7249(00)00002-7
Dóra E, Kovách A G B. Effect of topically administered epinephrine, norepinephrine, andacetylcholine on cerebrocortical circulation and the NAD/NADH redoxstate. Journal of Cerebral Blood Flow andMetabolism, 1983, 3(2): 161―169
LaManna J C, Sylvia A L, Martel D, Rosenthal M. Fluorometric monitoring of the effects of adrenergicagents on oxidative metabolism in intact cerebral cortex. Neuropharmacology, 1976, 15(1): 17―24

doi: 10.1016/0028-3908(76)90092-7
Chance B, Cohen P, Jobsis F, Schoener B. Intracellularoxidation-reduction states in vivo. Science, 1962, 137 (3529): 499―508

doi: 10.1126/science.137.3529.499
Zurovsky Y, Sonn J. Fiber opticsurface fluorometry-reflectometry technique in the renal physiologyof rats. Journal of Basic and ClinicalPhysiology and Pharmacology, 1992, 3(4): 343―358
McCuskey R. The hepatic microvascular system. In: Arias I, Boyer J, Fausta N, Jakoby W, Schachter D, Shafritz D, eds. The Liver: Biology and Pharmacology. New York: Raven Press Ltd., 1994, 1089―1106
Mayevsky A, Nakache R, Luger-Hamer M, Amran D, Sonn J. Assessmentof transplanted kidney vitality by a multiparametric monitoring system. Transplantation Proceedings, 2001, 33(6): 2933―2934

doi: 10.1016/S0041-1345(01)02257-6
Rothe C F, Maass-Moreno R. Hepaticvenular resistance responses to norepinephrine, isoproterenol, adenosine,histamine, and ACh in rabbits. AmericanJournal of Physiology, 1998, 274(3): H777―H785
Wheatley A M, Almond N E. Effect of hepatic nerve stimulation and norepinephrine on the laserDoppler flux signal from the surface of the perfused rat liver. International Journal of Microcirculation Clinicaland Experimental, 1997, 17(1): 48―54

doi: 10.1159/000179206
Kraut A, Barbiro-Michaely E, Mayevsky A. Differential effects of norepinephrineon brain and other less vital organs detected by a multisite multiparametricmonitoring system. Medical Science Monitor, 2004, 10(7): BR215―BR220
Waltemath C L. Oxygen, uptake, transport, and tissue utilization. Anesthesia and Analgesia, 1970, 49(1): 184―203

doi: 10.1213/00000539-197001000-00035
Chance B, Oshino N, Sugano T, Mayevsky A. Basic principles of tissue oxygen determination frommitochondrial signals. In: Bicher H I, Bruley D F, eds. Oxygen Transport to Tissue. Instrumentation, Methods, and Physiology. New York: Plenum Publishing Corporation, 1973, 277―292
Chance B, Williams G R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics ofoxygen utilization. Journal of BiologicalChemistry, 1955, 217(1): 383―393
Nicholls D G, Budd S L. Mitochondriaand neuronal survival. Physiological Reviews, 2000, 80(1): 315―360
Mayevsky A, Barbiro-Michaely E, Kutai-Asis H, Deutsch A, Jaronkin A. Brainphysiological state evaluated by real time multiparametric tissuespectroscopy in vivo. Proceedings of SPIE, 2004, 5326: 98―105

doi: 10.1117/12.528599
Mayevsky A, Meilin S, Rogatsky G G, Zarchin N, Thom S R. Multiparametricmonitoring of the awake brain exposed to carbon monoxide. Journal of Applied Physiology, 1995, 78(3): 1188―1196
Mayevsky A. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Research, 1984, 319(1): 49―68
Mayevsky A, Weiss H R. Cerebralblood flow and oxygen consumption in cortical spreading depression. Journal of Cerebral Blood Flow and Metabolism, 1991, 11(5): 829―836
Mayevsky A, Flamm E S, Pennie W, Chance B. Afiber optic based multiprobe system for intraoperative monitoringof brain functions. Proceedings of SPIE, 1991, 1431: 303―313

doi: 10.1117/12.44201
Mayevsky A, Frank K, Muck M, Nioka S, Kessler M, Chance B. Multiparametric evaluation of brain functions in theMongolian gerbil in vivo. Journal of Basic and Clinical Physiology and Pharmacology, 1992, 3(4): 323―342
Mayevsky A, Frank K H, Nioka S, Kessler M, Chance B. Oxygen supply and brain function in vivo: a multiparametric monitoring approachin the mongolian gerbil. In: Piiper J, Goldstick T K, Meyer M, eds. Oxygen Transportto Tissue XII. New York: Plenum Press, 1990, 303―313
Deutsch A, Pevzner E, Jaronkin A, Mayevsky A. Real time evaluation of tissue vitality by monitoringof microcircultory blood flow, HbO2 and mitochondrialNADH redox state. Proceedings of SPIE, 2004, 5317: 116―127

doi: 10.1117/12.528601
Pevzner E, Deutsch A, Manor T, Dekel N, Etziony R, Derzy I, Razon N, Mayevsky A. Real-timemultiparametric spectroscopy as a practical tool for evaluation oftissue vitality in vivo. Proceedings of SPIE, 2003, 4958: 171―182

doi: 10.1117/12.476121
Mayevsky A, Chance B. Intracellularoxidation-reduction state measured in situ by a multichannel fiber-opticsurface fluorometer. Science, 1982, 217(4559): 537―540

doi: 10.1126/science.7201167
Stern M D. In vivo evaluationof microcirculation by coherent light scattering. Nature, 1975, 254(5495): 56―58

doi: 10.1038/254056a0
Bonner R, Nossal R. Modelfor laser Doppler measurements of blood flow in tissue. Applied Optics, 1981, 20(12): 2097―2107

doi: 10.1364/AO.20.002097
Mayevsky A, Manor T, Pevzner E, Deutsch A, Etziony R, Dekel N, Jaronkin A. Tissuespectroscope: a novel in vivo approachto real time monitoring of tissue vitality. Journal of Biomedical Optics, 2004, 9(5): 1028―1045

doi: 10.1117/1.1780543
Mayevsky A, Zarchin N, Friedli C M. Factors affecting the oxygenbalance in the awake cerebral cortex exposed to spreading depression. Brain Research, 1982, 236(1): 93―105

doi: 10.1016/0006-8993(82)90037-3
Mayevsky A, Rogatsky G G. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. American Journal of Physiology: Cell Physiology, 2007, 292(2): C615―C640

doi: 10.1152/ajpcell.00249.2006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed