|
|
|
Progress in creating second-order optical nonlinearity
in silicate glasses and waveguides through thermal poling |
| Simon FLEMING,Honglin AN, |
| Institute of Photonics
and Optical Science, School of Physics, University of Sydney, Sydney,
NSW 2006, Australia; |
|
|
|
|
Abstract This paper describes progress in characterizing the distribution and localization of the second-order nonlinearity induced in thermally poled silicate glasses and optical waveguides, in particular, optical fibers. It starts by describing the basics of the poling technique, especially the most commonly used “thermal poling” technique. Then results of systematic investigation of the distribution of the second-order nonlinearity in poled glass and special fibers using second-harmonic microscopy are presented. Interesting issues such as the effectiveness of the poling technique for waveguides formed by ultrafast laser pulses are also discussed.
|
|
Issue Date: 05 March 2010
|
|
|
Myers R A, Mukherjee N, Brueck S R J. Large second-order nonlinearity in poled fused silica. Optics Letters, 1991, 16(22): 1732―1734
doi: 10.1364/OL.16.001732
|
|
Alley T G, Brueck S R J, Myers R A. Space charge dynamics in thermally poled fused silica. Journal of Non-Crystalline Solids, 1998, 242(2—3): 165―176
doi: 10.1016/S0022-3093(98)00788-1
|
|
Kazansky P G, Russell P St J. Thermally poled glass: frozen-inelectric field or oriented dipoles? OpticsCommunications, 1994, 110(5—6): 611―614
doi: 10.1016/0030-4018(94)90260-7
|
|
Fujiwara T, Wong D, Zhao Y, Fleming S, Poole S, Sceats M. Electro-optic modulation in a germanosilicate fibre withUV-excited poling. Electronics Letters, 1995, 31(7): 573―575
doi: 10.1049/el:19950384
|
|
Okada A, Ishii K, Mito K, Sasaki K. Phase-matchedsecond-harmonic generation in novel corona poled glass waveguides. Applied Physics Letters, 1992, 60(23): 2853―2855
doi: 10.1063/1.106845
|
|
Kazansky P G, Kamal A, Russell P St J. High second order nonlinearities induced in lead silicateglass by electron beam irradiation. OpticsLetters, 1993, 18(9): 693―695
doi: 10.1364/OL.18.000693
|
|
Henry L J, McGrath B V, Alley T G, Kester J J. Optical nonlinearity in fused silica by proton implantation. Journal of the Optical Society of America B: OpticalPhysics, 1996, 13(5): 827―836
doi: 10.1364/JOSAB.13.000827
|
|
Alley T G, Brueck S R J. Visualization of the nonlinearoptical space-charge region of bulk thermally poled fused-silica glass. Optics Letters, 1998, 23(15): 1170―1172
doi: 10.1364/OL.23.001170
|
|
Margulis W, Laurell F. Interferometric study ofpoled glass under etching. Optics Letters, 1996, 21(21): 1786―1788
doi: 10.1364/OL.21.001786
|
|
Kudlinksi A, Quiquempois Y, Lelek M, Zeghlache H, Martinelli G. Complete characterizationof the nonlinear spatial distribution induced in poled silica glasswith a submicron resolution. Applied PhysicsLetters, 2003, 83(17): 3623―3625
doi: 10.1063/1.1622449
|
|
An H, Fleming S, Cox G. Visualization of second-order nonlinear layer in thermallypoled fused silica glass. Applied PhysicsLetters, 2004, 85(24): 5819―5821
doi: 10.1063/1.1835554
|
|
Deparis O, Corbari C, Kazansky P G, Sakaguchi K. Enhancedstability of the second-order optical nonlinearity in poled glasses. Applied Physics Letters, 2004, 84(24): 4857―4859
doi: 10.1063/1.1760885
|
|
An H, Fleming S. Second-order optical nonlinearityin thermally poled borosilicate glass. Applied Physics Letters, 2006, 89(18): 181111
doi: 10.1063/1.2374690
|
|
An H, Fleming S. Second-order optical nonlinearityand accompanying near-surface structural modifications in thermallypoled soda-lime silicate glasses. Journalof the Optical Society of America B: Optical Physics, 2006, 23(11): 2303―2309
doi: 10.1364/JOSAB.23.002303
|
|
Wong D, Xu W, Fleming S, Janos M, Lo K-M. Frozen-in electrical field in thermallypoled fibers. Optical Fiber Technology, 1999, 5(2): 235―241
doi: 10.1006/ofte.1998.0297
|
|
An H, Fleming S. Characterization of a second-ordernonlinear layer profile in thermally poled optical fibers with second-harmonicmicroscopy. Optics Letters, 2005, 30(8): 866―868
doi: 10.1364/OL.30.000866
|
|
An H, Fleming S. Hindering effect of the core-claddinginterface on the progression of the second-order nonlinearity layerin thermally poled optical fibers. AppliedPhysics Letters, 2005, 87(10): 101108
doi: 10.1063/1.2040007
|
|
An H, Fleming S. Overcoming the impeding effectof core-cladding interface on the progression of the second-ordernonlinearity in thermally poled optical fibers. Applied Optics, 2006, 45(24): 6212―6217
doi: 10.1364/AO.45.006212
|
|
An H, Fleming S. Time evolution of the second-ordernonlinearity layer in thermally poled optical fiber. Applied Physics Letters, 2006, 89(23): 231105
doi: 10.1063/1.2402897
|
|
An H, Fleming S. Creating large second-ordernonlinearity in twin-hole optical fibre with core at the centre ofthe two holes. Electronics Letters, 2007, 43(4): 206―207
doi: 10.1049/el:20073290
|
|
Davis K M, Miura K, Sugimoto N, Hirao K. Writingwaveguides in glass with a femtosecond laser. Optics Letters, 1996, 21(21): 1729―1731
doi: 10.1364/OL.21.001729
|
|
Schaffer C B, Brodeur A, García J F, Mazur E. Micromachiningbulk glass by use of femtosecond laser pulses with nanojoule energy. Optics Letters, 2001, 26(2): 93―95
doi: 10.1364/OL.26.000093
|
|
Corbari C, Mills J D, Deparis O, Klappauf B G, Kazansky P G. Thermal poling of glass modifiedby femtosecond laser irradiation. AppliedPhysics Letters, 2002, 81(9): 1585―1587
doi: 10.1063/1.1504181
|
|
Li G, Winick K A, Said A A, Dugan M, Bado P. Waveguide electro-optic modulator infused silica fabricated by femtosecond laser direct writing and thermalpoling. Optics Letters, 2006, 31(6): 739―741
doi: 10.1364/OL.31.000739
|
|
An H, Fleming S, McMillen B W, Chen K P, Snoke D. Thermal poling induced second-order nonlinearityin femtosecond laser-modified fused silica. Applied Physics Letters, 2008, 93(6): 061115
doi: 10.1063/1.2973149
|
|
Glezer E N, Mazur E. Ultrafast-laser driven micro-explosionsin transparent materials. Applied PhysicsLetters, 1997, 71(7): 882―884
doi: 10.1063/1.119677
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|