Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (1) : 84-91    https://doi.org/10.1007/s12200-009-0078-9
Research articles
Progress in creating second-order optical nonlinearity in silicate glasses and waveguides through thermal poling
Simon FLEMING,Honglin AN,
Institute of Photonics and Optical Science, School of Physics, University of Sydney, Sydney, NSW 2006, Australia;
 Download: PDF(242 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper describes progress in characterizing the distribution and localization of the second-order nonlinearity induced in thermally poled silicate glasses and optical waveguides, in particular, optical fibers. It starts by describing the basics of the poling technique, especially the most commonly used “thermal poling” technique. Then results of systematic investigation of the distribution of the second-order nonlinearity in poled glass and special fibers using second-harmonic microscopy are presented. Interesting issues such as the effectiveness of the poling technique for waveguides formed by ultrafast laser pulses are also discussed.
Issue Date: 05 March 2010
 Cite this article:   
Simon FLEMING,Honglin AN. Progress in creating second-order optical nonlinearity in silicate glasses and waveguides through thermal poling[J]. Front. Optoelectron., 2010, 3(1): 84-91.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0078-9
https://academic.hep.com.cn/foe/EN/Y2010/V3/I1/84
Myers R A, Mukherjee N, Brueck S R J. Large second-order nonlinearity in poled fused silica. Optics Letters, 1991, 16(22): 1732―1734

doi: 10.1364/OL.16.001732
Alley T G, Brueck S R J, Myers R A. Space charge dynamics in thermally poled fused silica. Journal of Non-Crystalline Solids, 1998, 242(2—3): 165―176

doi: 10.1016/S0022-3093(98)00788-1
Kazansky P G, Russell P St J. Thermally poled glass: frozen-inelectric field or oriented dipoles? OpticsCommunications, 1994, 110(5—6): 611―614

doi: 10.1016/0030-4018(94)90260-7
Fujiwara T, Wong D, Zhao Y, Fleming S, Poole S, Sceats M. Electro-optic modulation in a germanosilicate fibre withUV-excited poling. Electronics Letters, 1995, 31(7): 573―575

doi: 10.1049/el:19950384
Okada A, Ishii K, Mito K, Sasaki K. Phase-matchedsecond-harmonic generation in novel corona poled glass waveguides. Applied Physics Letters, 1992, 60(23): 2853―2855

doi: 10.1063/1.106845
Kazansky P G, Kamal A, Russell P St J. High second order nonlinearities induced in lead silicateglass by electron beam irradiation. OpticsLetters, 1993, 18(9): 693―695

doi: 10.1364/OL.18.000693
Henry L J, McGrath B V, Alley T G, Kester J J. Optical nonlinearity in fused silica by proton implantation. Journal of the Optical Society of America B: OpticalPhysics, 1996, 13(5): 827―836

doi: 10.1364/JOSAB.13.000827
Alley T G, Brueck S R J. Visualization of the nonlinearoptical space-charge region of bulk thermally poled fused-silica glass. Optics Letters, 1998, 23(15): 1170―1172

doi: 10.1364/OL.23.001170
Margulis W, Laurell F. Interferometric study ofpoled glass under etching. Optics Letters, 1996, 21(21): 1786―1788

doi: 10.1364/OL.21.001786
Kudlinksi A, Quiquempois Y, Lelek M, Zeghlache H, Martinelli G. Complete characterizationof the nonlinear spatial distribution induced in poled silica glasswith a submicron resolution. Applied PhysicsLetters, 2003, 83(17): 3623―3625

doi: 10.1063/1.1622449
An H, Fleming S, Cox G. Visualization of second-order nonlinear layer in thermallypoled fused silica glass. Applied PhysicsLetters, 2004, 85(24): 5819―5821

doi: 10.1063/1.1835554
Deparis O, Corbari C, Kazansky P G, Sakaguchi K. Enhancedstability of the second-order optical nonlinearity in poled glasses. Applied Physics Letters, 2004, 84(24): 4857―4859

doi: 10.1063/1.1760885
An H, Fleming S. Second-order optical nonlinearityin thermally poled borosilicate glass. Applied Physics Letters, 2006, 89(18): 181111

doi: 10.1063/1.2374690
An H, Fleming S. Second-order optical nonlinearityand accompanying near-surface structural modifications in thermallypoled soda-lime silicate glasses. Journalof the Optical Society of America B: Optical Physics, 2006, 23(11): 2303―2309

doi: 10.1364/JOSAB.23.002303
Wong D, Xu W, Fleming S, Janos M, Lo K-M. Frozen-in electrical field in thermallypoled fibers. Optical Fiber Technology, 1999, 5(2): 235―241

doi: 10.1006/ofte.1998.0297
An H, Fleming S. Characterization of a second-ordernonlinear layer profile in thermally poled optical fibers with second-harmonicmicroscopy. Optics Letters, 2005, 30(8): 866―868

doi: 10.1364/OL.30.000866
An H, Fleming S. Hindering effect of the core-claddinginterface on the progression of the second-order nonlinearity layerin thermally poled optical fibers. AppliedPhysics Letters, 2005, 87(10): 101108

doi: 10.1063/1.2040007
An H, Fleming S. Overcoming the impeding effectof core-cladding interface on the progression of the second-ordernonlinearity in thermally poled optical fibers. Applied Optics, 2006, 45(24): 6212―6217

doi: 10.1364/AO.45.006212
An H, Fleming S. Time evolution of the second-ordernonlinearity layer in thermally poled optical fiber. Applied Physics Letters, 2006, 89(23): 231105

doi: 10.1063/1.2402897
An H, Fleming S. Creating large second-ordernonlinearity in twin-hole optical fibre with core at the centre ofthe two holes. Electronics Letters, 2007, 43(4): 206―207

doi: 10.1049/el:20073290
Davis K M, Miura K, Sugimoto N, Hirao K. Writingwaveguides in glass with a femtosecond laser. Optics Letters, 1996, 21(21): 1729―1731

doi: 10.1364/OL.21.001729
Schaffer C B, Brodeur A, García J F, Mazur E. Micromachiningbulk glass by use of femtosecond laser pulses with nanojoule energy. Optics Letters, 2001, 26(2): 93―95

doi: 10.1364/OL.26.000093
Corbari C, Mills J D, Deparis O, Klappauf B G, Kazansky P G. Thermal poling of glass modifiedby femtosecond laser irradiation. AppliedPhysics Letters, 2002, 81(9): 1585―1587

doi: 10.1063/1.1504181
Li G, Winick K A, Said A A, Dugan M, Bado P. Waveguide electro-optic modulator infused silica fabricated by femtosecond laser direct writing and thermalpoling. Optics Letters, 2006, 31(6): 739―741

doi: 10.1364/OL.31.000739
An H, Fleming S, McMillen B W, Chen K P, Snoke D. Thermal poling induced second-order nonlinearityin femtosecond laser-modified fused silica. Applied Physics Letters, 2008, 93(6): 061115

doi: 10.1063/1.2973149
Glezer E N, Mazur E. Ultrafast-laser driven micro-explosionsin transparent materials. Applied PhysicsLetters, 1997, 71(7): 882―884

doi: 10.1063/1.119677
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed