|
|
|
Impact of polymer material properties on microstructured
optical fibres |
| Maryanne C. J. LARGE,Alexander ARGYROS, |
| School of Physics, University
of Sydney, Sydney 2006, Australia; |
|
|
|
|
Abstract Polymer optical fibres (POFs) have historically been regarded as a poor relation to their silica counterparts because of their higher attenuation, but they also have a number of advantages, particularly when coupled with a range of properties that can be produced using microstructures. In terms of their mechanical properties, they are lighter, remain flexible at large core sizes and can be stretched well beyond 30% without breakage. They are also biocompatible, they do not produce dangerous shards, and their low processing temperatures allow functionalized organic materials to be incorporated without decomposition. Other advantages for specific applications include better transmission properties (in the THz region) and the possibility of refractive indices that are close to that of water.
|
|
Issue Date: 05 March 2010
|
|
|
Large M C J, Poladian L, Barton G W, van Eijkelenborg M A. Microstructured Polymer Optical Fibres. New York: Springer, 2008
doi: 10.1007/978-0-387-68617-2
|
|
Argyros A. Microstructuredpolymer optical fibers. Journal of LightwaveTechnology, 2009, 27(11): 1571–1579
doi: 10.1109/JLT.2009.2020609
|
|
Morisawa M, Muto S. A novel breathing conditionsensor using plastic optical fiber. In: Proceedings of IEEE Sensors, 2004, 3: 1277–1280
doi: 10.1109/ICSENS.2004.1426414
|
|
Kuang K S C, Cantwell W J, Scully P J. An evaluation of a novel plastic optical fibre sensorfor axial strain and bend measurements. Measurement Science and Technology, 2000, 13(10): 1523–1534
doi: 10.1088/0957-0233/13/10/303
|
|
Kuang K S C, Quek S T, Maalej M. Assessment of an extrinsic polymer-basedoptical fibre sensor for structural health monitoring. Measurement Science and Technology, 2004, 15(10): 2133–2141
doi: 10.1088/0957-0233/15/10/024
|
|
Kuang K S C, Cantwell W J. The use of plastic opticalfibre sensors for monitoring the dynamic response of fibre compositebeams. Measurement Science and Technology, 2003, 14(6): 736–745
doi: 10.1088/0957-0233/14/6/305
|
|
Kiesel S, Peters K, Hassan T, Kowalsky M. Behaviour of intrinsic polymer optical fibre sensor for large-strainapplications. Measurement Science and Technology, 2007, 18(10): 3144–3154
doi: 10.1088/0957-0233/18/10/S16
|
|
Kiesel S, Peters K, Hassan T, Kowalsky M. Calibration of a single-mode polymer optical fiber large-strain sensor. Measurement Science and Technology, 2009, 20(3): 034016
doi: 10.1088/0957-0233/20/3/034016
|
|
Large M C J, Moran J, Ye L. The role of viscoelastic properties in strain testingusing microstructured polymer optical fibres (mPOFs). Measurement Science and Technology, 2009, 20(3): 034014
doi: 10.1088/0957-0233/20/3/034014
|
|
Cox F M, Lwin R, Large M C J, Cordeiro C M B. Opening up optical fibres. Optics Express, 2007, 15(19): 11843–11848
doi: 10.1364/OE.15.011843
|
|
Galiatsatos V, Neaffer R O, Sen S, Sherman B J. In: Mark J E, ed. Physical Properties ofPolymers Handbook. Chapter 39: Refractive index, stress-optical coefficient,and optical configuration parameter of polymers. New York: AIP Press, 1996
|
|
Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber-basedsurface-plasmon-resonance sensors. Journalof the Optical Society of America B, 2007, 24(6): 1423–1429
doi: 10.1364/JOSAB.24.001423
|
|
Hautakorpi M, Mattinen M, Ludvigsen H. Surface-plasmon-resonance sensor based on three-holemicrostructured optical fiber. Optics Express, 2008, 16(12): 8427–8432
doi: 10.1364/OE.16.008427
|
|
Wang A, Docherty A, Kuhlmey B T, Cox F, Large M C J. Surface plasmon resonancein slotted microstructured polymer optical fibres. In: Proceedingsof the 8th International Conference on Materialsfor Advanced Technologies, Symposium P: Optical Fiber Devices andtheir Applications. Singapore, 2009, 41–43
|
|
Jin Y S, Kim G J, Jeon S G. Terahertz dielectric properties of polymers. Journal of the Korean Physical Society, 2006, 49(2): 513–517
|
|
Diwa G, Quema A, Estacio E, Pobre R, Murakami H, Ono S, Sarukura N. Photonic-crystal-fiberpigtail device integrated with lens-duct optics for terahertz radiationcoupling. Applied Physics Letters, 2005, 87(15): 151114
doi: 10.1063/1.2093941
|
|
Han H, Park H, Cho M, Kim J. Terahertz pulsepropagation in a plastic photonic crystal fiber. Applied Physics Letters, 2002, 80(15): 2634–2636
doi: 10.1063/1.1468897
|
|
Argyros A, Anthony J, Leonhardt R, Large M C J. Terahertztransmission in Zeonex polymer waveguides. In: Proceedings of the 8th International Symposium on Photonic and ElectromagneticCrystal Structures (PECS). 2009, 182
|
|
Atakaramians S, Afshar V S, Fischer B M, Abbott D, Monro T M. Porous fibers: a novel approach to lowloss THz waveguides. Optics Express, 2008, 16(12): 8845–8854
doi: 10.1364/OE.16.008845
|
|
Hassani A, Dupuis A, Skorobogatiy M. Porous polymer fibers for low-lossterahertz guiding. Optics Express, 2008, 16(9): 6340–6351
doi: 10.1364/OE.16.006340
|
|
Ponseca Jr C S, Pobre R, Estacio E, Sarukura N, Argyros A, Large M C J, van Eijkelenborg M A. Transmission of terahertz radiation using a microstructured polymeroptical fiber. Optics Letters, 2008, 33(9): 902–904
doi: 10.1364/OL.33.000902
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|