Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (1) : 99-102    https://doi.org/10.1007/s12200-009-0082-0
Research articles
Impact of polymer material properties on microstructured optical fibres
Maryanne C. J. LARGE,Alexander ARGYROS,
School of Physics, University of Sydney, Sydney 2006, Australia;
 Download: PDF(110 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Polymer optical fibres (POFs) have historically been regarded as a poor relation to their silica counterparts because of their higher attenuation, but they also have a number of advantages, particularly when coupled with a range of properties that can be produced using microstructures. In terms of their mechanical properties, they are lighter, remain flexible at large core sizes and can be stretched well beyond 30% without breakage. They are also biocompatible, they do not produce dangerous shards, and their low processing temperatures allow functionalized organic materials to be incorporated without decomposition. Other advantages for specific applications include better transmission properties (in the THz region) and the possibility of refractive indices that are close to that of water.
Issue Date: 05 March 2010
 Cite this article:   
Maryanne C. J. LARGE,Alexander ARGYROS. Impact of polymer material properties on microstructured optical fibres[J]. Front. Optoelectron., 2010, 3(1): 99-102.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0082-0
https://academic.hep.com.cn/foe/EN/Y2010/V3/I1/99
Large M C J, Poladian L, Barton G W, van Eijkelenborg M A. Microstructured Polymer Optical Fibres. New York: Springer, 2008

doi: 10.1007/978-0-387-68617-2
Argyros A. Microstructuredpolymer optical fibers. Journal of LightwaveTechnology, 2009, 27(11): 1571–1579

doi: 10.1109/JLT.2009.2020609
Morisawa M, Muto S. A novel breathing conditionsensor using plastic optical fiber. In: Proceedings of IEEE Sensors, 2004, 3: 1277–1280

doi: 10.1109/ICSENS.2004.1426414
Kuang K S C, Cantwell W J, Scully P J. An evaluation of a novel plastic optical fibre sensorfor axial strain and bend measurements. Measurement Science and Technology, 2000, 13(10): 1523–1534

doi: 10.1088/0957-0233/13/10/303
Kuang K S C, Quek S T, Maalej M. Assessment of an extrinsic polymer-basedoptical fibre sensor for structural health monitoring. Measurement Science and Technology, 2004, 15(10): 2133–2141

doi: 10.1088/0957-0233/15/10/024
Kuang K S C, Cantwell W J. The use of plastic opticalfibre sensors for monitoring the dynamic response of fibre compositebeams. Measurement Science and Technology, 2003, 14(6): 736–745

doi: 10.1088/0957-0233/14/6/305
Kiesel S, Peters K, Hassan T, Kowalsky M. Behaviour of intrinsic polymer optical fibre sensor for large-strainapplications. Measurement Science and Technology, 2007, 18(10): 3144–3154

doi: 10.1088/0957-0233/18/10/S16
Kiesel S, Peters K, Hassan T, Kowalsky M. Calibration of a single-mode polymer optical fiber large-strain sensor. Measurement Science and Technology, 2009, 20(3): 034016

doi: 10.1088/0957-0233/20/3/034016
Large M C J, Moran J, Ye L. The role of viscoelastic properties in strain testingusing microstructured polymer optical fibres (mPOFs). Measurement Science and Technology, 2009, 20(3): 034014

doi: 10.1088/0957-0233/20/3/034014
Cox F M, Lwin R, Large M C J, Cordeiro C M B. Opening up optical fibres. Optics Express, 2007, 15(19): 11843–11848

doi: 10.1364/OE.15.011843
Galiatsatos V, Neaffer R O, Sen S, Sherman B J. In: Mark J E, ed. Physical Properties ofPolymers Handbook. Chapter 39: Refractive index, stress-optical coefficient,and optical configuration parameter of polymers. New York: AIP Press, 1996
Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber-basedsurface-plasmon-resonance sensors. Journalof the Optical Society of America B, 2007, 24(6): 1423–1429

doi: 10.1364/JOSAB.24.001423
Hautakorpi M, Mattinen M, Ludvigsen H. Surface-plasmon-resonance sensor based on three-holemicrostructured optical fiber. Optics Express, 2008, 16(12): 8427–8432

doi: 10.1364/OE.16.008427
Wang A, Docherty A, Kuhlmey B T, Cox F, Large M C J. Surface plasmon resonancein slotted microstructured polymer optical fibres. In: Proceedingsof the 8th International Conference on Materialsfor Advanced Technologies, Symposium P: Optical Fiber Devices andtheir Applications. Singapore, 2009, 41–43
Jin Y S, Kim G J, Jeon S G. Terahertz dielectric properties of polymers. Journal of the Korean Physical Society, 2006, 49(2): 513–517
Diwa G, Quema A, Estacio E, Pobre R, Murakami H, Ono S, Sarukura N. Photonic-crystal-fiberpigtail device integrated with lens-duct optics for terahertz radiationcoupling. Applied Physics Letters, 2005, 87(15): 151114

doi: 10.1063/1.2093941
Han H, Park H, Cho M, Kim J. Terahertz pulsepropagation in a plastic photonic crystal fiber. Applied Physics Letters, 2002, 80(15): 2634–2636

doi: 10.1063/1.1468897
Argyros A, Anthony J, Leonhardt R, Large M C J. Terahertztransmission in Zeonex polymer waveguides. In: Proceedings of the 8th International Symposium on Photonic and ElectromagneticCrystal Structures (PECS). 2009, 182
Atakaramians S, Afshar V S, Fischer B M, Abbott D, Monro T M. Porous fibers: a novel approach to lowloss THz waveguides. Optics Express, 2008, 16(12): 8845–8854

doi: 10.1364/OE.16.008845
Hassani A, Dupuis A, Skorobogatiy M. Porous polymer fibers for low-lossterahertz guiding. Optics Express, 2008, 16(9): 6340–6351

doi: 10.1364/OE.16.006340
Ponseca Jr C S, Pobre R, Estacio E, Sarukura N, Argyros A, Large M C J, van Eijkelenborg M A. Transmission of terahertz radiation using a microstructured polymeroptical fiber. Optics Letters, 2008, 33(9): 902–904

doi: 10.1364/OL.33.000902
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed