Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (1) : 45-53    https://doi.org/10.1007/s12200-009-0092-y
Research articles
Gain and ultrafast optical switching in PMMA optical fibers and films doped with luminescent conjugated polymers and oligomers
Ana CHARAS1,Jenny CLARK2,Juan CABANILLAS-GONZALEZ2,Guglielmo LANZANI2,Luca BAZZANA3,Alessandro NOCIVELLI3,Jorge MORGADO4,
1.Instituto de Telecomunica??es, Lisbon P-1049-001, Portugal; 2.Department of Physics, Politecnico di Milano, Milan 20133, Italy; 3.Luceat S.p.A., Dello (BS) 25020, Italy; 4.Instituto de Telecomunica??es, Lisbon P-1049-001, Portugal;Department of Chemical and Biological Engineering, Instituto Superior Técnico, Lisbon P-1049-001, Portugal;
 Download: PDF(523 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Conjugated luminescent polymers and oligomers, exhibiting stimulated emission (SE), are dispersed in polymethylmethacrylate (PMMA), films and optical fibers, either by blending or upon copolymerisation. With this PMMA doping, we aim to achieve gain and ultrafast optical switching. The modification of the dopant’s chemical structure allows the tuning of the SE spectral region. Furthermore, we aim to achieve dopant chain isolation while maximising their concentration. In this paper, we present an overview of the research done in this area in the context of the European Union (EU)-funded research project “plastic optical fibers with embedded active polymers for data communications — POLYCOM”.
Issue Date: 05 March 2010
 Cite this article:   
Ana CHARAS,Jenny CLARK,Juan CABANILLAS-GONZALEZ, et al. Gain and ultrafast optical switching in PMMA optical fibers and films doped with luminescent conjugated polymers and oligomers[J]. Front. Optoelectron., 2010, 3(1): 45-53.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0092-y
https://academic.hep.com.cn/foe/EN/Y2010/V3/I1/45
Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(6293): 539–541

doi: 10.1038/347539a0
Mayer A C, Scully S R, Hardin B E, Rowell M W, McGehee M C. Polymer-based solar cells. Materials Today, 2007, 10(11): 28–33

doi: 10.1016/S1369-7021(07)70276-6
Chua L L, Zaumseil J, Chang J F, Ou E C W, Ho P K H, Sirringhaus H, Friend R H. General observation of n-typefield-effect behaviour in organic semiconductors. Nature, 2005, 434(7030): 194–199

doi: 10.1038/nature03376
Tessler N, Denton G J, Friend R H. Lasing from conjugated-polymer microcavities. Nature, 1996, 382(6593): 695–697

doi: 10.1038/382695a0
Pisignano D, Anni M, Gigli G, Cingolani R, Zavelani-Rossi M, Lanzani G, Barbarella G, Favaretto L. Amplified spontaneous emissionand efficient tunable laser emission from a substituted thiophene-basedoligomer. Applied Physics Letters, 2002, 81(19): 3534–3536

doi: 10.1063/1.1519735
Forrest S R. The path to ubiquitous and low-cost organic electronic applianceson plastic. Nature, 2004, 428(6986): 911–918

doi: 10.1038/nature02498
Virgili T, Marinotto D, Lanzani G, Bradley D D C. Ultrafast resonant optical switching in isolated polyfluorenes chains. Applied Physics Letters, 2005, 86(9): 091113

doi: 10.1063/1.1879085
Virgili T, Marinoto D, Manzoni C, Cerullo G, Lanzani G. Ultrafast intrachain photoexcitationof polymeric semiconductors. Physical ReviewLetters, 2005, 94(11): 117402

doi: 10.1103/PhysRevLett.94.117402
Clark J, Bazzana L, Bradley D D C, Gonzalez J C, Lanzani G, Lidzey D G, Morgado J M, Nocivelli A, Tsoi W C, Virgili T, Xia R D. Blue polymer optical fiberamplifiers based on conjugated fluorene oligomers. Journal of Nanophotonics, 2008, 2(1): 023504

doi: 10.1117/1.2902341
Zubia J, Arrue J. Plastic optical fibers: anintroduction to their technological processes and applications. Optical Fiber Technology, 2001, 7(2): 101–140

doi: 10.1006/ofte.2000.0355
Zeimann O, Krauser J, Zamzow P E, Daum W. POF: PolymerOptical Fibers for Data Communication. New York: Springer-Verlag BerlinHeidelberg, 2002
Koike Y, Ishigure T. High-bandwidth plastic opticalfiber for fiber to the display. Journalof Lightwave Technology, 2006, 24(12): 4541–4553

doi: 10.1109/JLT.2006.885775
Kuriki K, Koike Y, Okamoto Y. Plastic optical fiber lasers and amplifiers containinglanthanide complexes. Chemical Reviews, 2002, 102(6): 2347–2356

doi: 10.1021/cr010309g
Grell M, Bradley D D C, Long X, Chamberlain T, Inbasekaran M, Woo E P, Soliman M. Chaingeometry, solution aggregation and enhanced dichroism in the liquidcrystallineconjugated polymer poly(9,9-dioctylfluorene). Acta Polymerica, 1998, 49(8): 439–444

doi: 10.1002/(SICI)1521-4044(199808)49:8<439::AID-APOL439>3.0.CO;2-A
Dias F B, Morgado J, Maçanita A L, Da Costa F P, Burrows H D, Monkman A P. Kinetics and thermodynamics of poly(9,9-dioctylfluorene) β-phase formation in dilute solution. Macromolecules, 2006, 39(17): 5854–5864

doi: 10.1021/ma0602932
Morgado J, Mendonça AL, Charas A, Clark J, Lanzani G, Bazzana L, Nocivelli A. Polyfluorene-PMMAcopolymers for plastic optical fibers with gain. Proceedings of SPIE, 2008, 6999: 69990M

doi: 10.1117/12.781574
Bliznyuk V N, Carter S A, Scott J C, Klärner G, Miller R D, Miller D C. Electrical and photoinduced degradation of polyfluorenebased films and light-emitting devices. Macromolecules, 1999, 32(2): 361–369

doi: 10.1021/ma9808979
Charas A, Alcácer L, Pimentel A, Conde J P, Morgado J. Observation of field-effect in a cross-linkedpolyfluorene semiconductor. Chemical PhysicsLetters, 2008, 455(4―6): 189–191

doi: 10.1016/j.cplett.2008.02.087
Charas A, Morgado J, Martinho J M G, Alcácer L, Cacialli F. Tuning the optoelectronicproperties of polyfluorenes by copolymerisation with thiophene moieties. Synthetic Metals, 2002, 127(1―3): 251–254

doi: 10.1016/S0379-6779(01)00637-3
Amarasinghe D, Rusekas A, Vasdekis A E, Turnbull G A, Samuel I D W. High-gain broadband solid-stateoptical amplifier using a semiconducting copolymer. Advanced Materials, 2009, 21(1): 107–110

doi: 10.1002/adma.200801930
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed