Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 190-193    https://doi.org/10.1007/s12200-010-0002-3
Research articles
Limit of accuracy in laser fabrication with metal powder
Xubao WANG,Tiechuan ZUO,
Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China;
 Download: PDF(142 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The research presented in this paper focuses on the laser-powder interaction. Through the experiment with metal powder in micrometers, we found that, in an invariable laser power density, the thickness of the final fabricated thin wall was similar to the geometrical dimension of the powder line, but could be much greater than the laser focus spot, even greater than two orders of magnitude. Furthermore, this paper showed that, the un-melted and semi-fused particles were concentrated. Thus, in this paper, combining the optical scattering theory with capillarity and infiltration theory pointed out the inducement effect of laser and the self-melting of powder. Based on the experimental phenomena and theory, we get our own ideas on the laser micro-fabrication.
Issue Date: 05 June 2010
 Cite this article:   
Xubao WANG,Tiechuan ZUO. Limit of accuracy in laser fabrication with metal powder[J]. Front. Optoelectron., 2010, 3(2): 190-193.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0002-3
https://academic.hep.com.cn/foe/EN/Y2010/V3/I2/190
Greul M, Pintat T, Greulich M. Rapid prototyping of functionalmetallic parts. Computers in Industry, 1995, 28(1): 23―28

doi: 10.1016/0166-3615(95)00028-5
Wu G H, Langrana N A, Sadanji R, Danforth S. Solid freeform fabrication of metal components usingfused deposition of metals. Materials andDesign, 2002, 23(1): 97―105
Das S, Wohlert M, Beaman J J, Bourell D L. Producing metal parts with selective laser sintering/hotisostatic pressing. JOM Journal of TheMinerals, Metals and Materials Society, 1998, 50(12): 17―20
Exner H, Regenfuss P, Hartwig L, Klötzer S, Ebert R. Selective lasermicro sintering with a novel process. Proceedingsof SPIE, 2003, 5063: 145―151

doi: 10.1117/12.540730
Casalino G, De Filippis L A C, Ludovico A D, Tricarico L. An investigation of rapid prototyping of sand castingmolds by selective laser sintering. Journalof Laser Applications, 2002, 14(2): 100―106

doi: 10.2351/1.1471561
Ning Y, Wong Y S, Fuh J Y H, Loh H T. An approach to minimize build errors in direct metal laser sintering. IEEE Transactions on Automation Science Engineering, 2006, 3(1): 73―80

doi: 10.1109/TASE.2005.857656
Kumar S, Kruth J P. Effect ofbronze infiltration into laser sintered metallic parts. Materials and Design, 2007, 28(2): 400―407
Lanzetta M, Sachs E. Improved surfacefinish in 3D printing. Rapid PrototypingJournal, 2003, 9(3): 157―166

doi: 10.1108/13552540310477463
Sercombe T B, Schaffer G B. Rapid manufacturing of aluminum components. Science, 2003, 301(5637): 1225―1227

doi: 10.1126/science.1086989
Liu J H, Shi Y S, Lu Z L, Xu Y, Chen K H, Huang S H. Manufacturing metal parts via indirect SLS of compositeelemental powders. Materials Science andEngineering A, 2007, 444(1―2): 146―152

doi: 10.1016/j.msea.2006.08.070
Dück J, Niebling F, Neeβe T, Otto A. Infiltration as post-processing of laser sintered metalparts. Powder Technology, 2004, 145(1): 62―68

doi: 10.1016/j.powtec.2004.05.006
Wu C M L, Han G W. Synthesisof an Al2O3/Al co-continuouscomposite by reactive melt infiltration. Materials Characterization, 2007, 58(5): 416―422

doi: 10.1016/j.matchar.2006.06.006
Maeda K, Childs T H C. Laser sintering (SLS) of hard metal powders for abrasion resistantcoatings. Journal of Materials ProcessingTechnology, 2004, 149(1―3): 609―615

doi: 10.1016/j.jmatprotec.2004.02.024
Kruth J P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Bindingmechanisms in selective laser sintering and selective laser melting. Rapid prototyping Journal, 2005, 11(1): 26―36

doi: 10.1108/13552540510573365
Kruth J P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting ofiron-based powder. Journal of MaterialsProcessing Technology, 2004, 149(1―3): 616―622

doi: 10.1016/j.jmatprotec.2003.11.051
Brandner J J, Hansjosten E, Anurjew E, Pfleging W, Schubert K. Microstructuredevices generation by selective laser melting. Proceedings of SPIE, 2007, 6459: 645911

doi: 10.1117/12.698249
Sun M, Lü L, Fuh J Y H. Microstructure and propertiesof Fe-base alloy fabricated using selective laser melting. Proceedings of SPIE, 2002, 4426: 139―142

doi: 10.1117/12.456802
Santos E, Osakada K, Shiomi M, Morita M, Abe F. Fabricationof titanium dental implants by selective laser melting. Proceedings of SPIE, 2004, 5662: 268―273
Lewis G K, Schlienger E. Practicalconsiderations and capabilities for laser assisted direct metal deposition. Materials and Design, 2000, 21(4): 417―423
Vasinonta A, Beuth J L, Griffith M. Process maps for predicting residualstress and melt pool size in the laser-based fabrication of thin-walledstructures. Journal of Manufacturing Scienceand Engineering, 2007, 129(1): 101―109
Milewski J O, Lewis G K, Thoma D J, Keel G I, Nemec R B, Reinert R A. Directed light fabrication of a solid metal hemisphereusing 5-axis powder deposition. Journalof Materials Processing Technology, 1998, 75(1―3): 165―172
Syed W U H, Pinkerton A J, Lin L. Simultaneous wire- and powder-feeddirect metal deposition: an investigation of the process characteristicsand comparison with single-feed methods. Journal of Laser Applications, 2006, 18(1): 65―72
Qi H, Mazumder J, Green L, Herrit G. Laser beam analysis in direct metal deposition process. Journal of Laser Applications, 2005, 17(3): 136―143
He X, Mazumder J. Transportphenomena during direct metal deposition. Journal of Applied Physics, 2007, 101(5): 053113

doi: 10.1063/1.2710780
Alimardani M, Toyserkani E, Huissoon J P. Three-dimensional numericalapproach for geometrical prediction of multilayer laser solid freeformfabrication process. Journal of Laser Applications, 2007, 19(1): 14―25
Wang X B, Chen J M, Jiao D M, Wu Q, Li G, Zuo T C. The beam characteristic of Nd:YAG frequency doublingin a KTP crystal by the resonant external ring cavity. Proceedings of SPIE, 2004, 5646: 636―642
Mie G. Beiträge zur optik trüber medien, speziellkolloidaler metallösungen. AnnalenDer Physik, 1908, 25: 377―445
Penndorf R. Tables of the refractive index for standard air and therayleigh scattering coefficient for the spectral region between 0.2and 20.0?μ and their application to atmospheric optics. Journal of the Optical Society of America, 1957, 47(2): 176―182
Sudiarta I W, Chylek P. Mie-scatteringformalism for spherical particles embedded in an absorbing medium. Journal of the Optical Society of America A, 2001, 18(6): 1275―1278
Du H. Mie-scattering calculation. Applied Optics, 2004, 43(9): 1951―1956
Yang W. Improved recursive algorithm for light scattering bya multilayered sphere. Applied Optics, 2003, 42(9): 1710―1720
Siu G G, Cheng L. Mie solutionof light scattering from spheres of radii up to 80λ with digit-array method. Journal of the Optical Society of America B, 2002, 19(8): 1922―1929
Stout B, Nevière M, Popov E. T matrix of the homogeneous anisotropic sphere: applications to orientation-averagedresonant scattering. Journal of the OpticalSociety of America A, 2007, 24(4): 1120―1130
Gusarov A V, Kruth J P. Modellingof radiation transfer in metallic powders at laser treatment. International Journal of Heat and Mass Transfer, 2005, 48(16): 3423―3434
Kernan B D, Sachs E M, Allen S M, Sachs C, Raffenbeul L, Pettavino A, Lorenz A. Homogenoussteel infiltration. Metallurgical and MaterialsTransactions A, 2005, 36(10): 2815―2827
Qin Z K, Yu J K, Zhang X Y. Infiltration kinetics of pressurelessinfiltration in SiCp/Al composites. Transactionsof Nonferrous Metals Society of China, 2005, 15(2): 371―374
Sohn H, Yang D Y. Drop-on-demanddeposition of superheated metal droplets for selective infiltrationmanufacturing. Materials Science and EngineeringA, 2005, 392(1―2): 415―421
Ambrosi D. Infiltration through deformable porous media. Zeitschrift für Angewandte Mathematik undMechanik, 2002, 82(2): 115―124
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed