|
|
|
Limit of accuracy in laser fabrication with metal
powder |
| Xubao WANG,Tiechuan ZUO, |
| Institute of Laser Engineering,
Beijing University of Technology, Beijing 100124, China; |
|
|
|
|
Abstract The research presented in this paper focuses on the laser-powder interaction. Through the experiment with metal powder in micrometers, we found that, in an invariable laser power density, the thickness of the final fabricated thin wall was similar to the geometrical dimension of the powder line, but could be much greater than the laser focus spot, even greater than two orders of magnitude. Furthermore, this paper showed that, the un-melted and semi-fused particles were concentrated. Thus, in this paper, combining the optical scattering theory with capillarity and infiltration theory pointed out the inducement effect of laser and the self-melting of powder. Based on the experimental phenomena and theory, we get our own ideas on the laser micro-fabrication.
|
|
Issue Date: 05 June 2010
|
|
|
Greul M, Pintat T, Greulich M. Rapid prototyping of functionalmetallic parts. Computers in Industry, 1995, 28(1): 23―28
doi: 10.1016/0166-3615(95)00028-5
|
|
Wu G H, Langrana N A, Sadanji R, Danforth S. Solid freeform fabrication of metal components usingfused deposition of metals. Materials andDesign, 2002, 23(1): 97―105
|
|
Das S, Wohlert M, Beaman J J, Bourell D L. Producing metal parts with selective laser sintering/hotisostatic pressing. JOM Journal of TheMinerals, Metals and Materials Society, 1998, 50(12): 17―20
|
|
Exner H, Regenfuss P, Hartwig L, Klötzer S, Ebert R. Selective lasermicro sintering with a novel process. Proceedingsof SPIE, 2003, 5063: 145―151
doi: 10.1117/12.540730
|
|
Casalino G, De Filippis L A C, Ludovico A D, Tricarico L. An investigation of rapid prototyping of sand castingmolds by selective laser sintering. Journalof Laser Applications, 2002, 14(2): 100―106
doi: 10.2351/1.1471561
|
|
Ning Y, Wong Y S, Fuh J Y H, Loh H T. An approach to minimize build errors in direct metal laser sintering. IEEE Transactions on Automation Science Engineering, 2006, 3(1): 73―80
doi: 10.1109/TASE.2005.857656
|
|
Kumar S, Kruth J P. Effect ofbronze infiltration into laser sintered metallic parts. Materials and Design, 2007, 28(2): 400―407
|
|
Lanzetta M, Sachs E. Improved surfacefinish in 3D printing. Rapid PrototypingJournal, 2003, 9(3): 157―166
doi: 10.1108/13552540310477463
|
|
Sercombe T B, Schaffer G B. Rapid manufacturing of aluminum components. Science, 2003, 301(5637): 1225―1227
doi: 10.1126/science.1086989
|
|
Liu J H, Shi Y S, Lu Z L, Xu Y, Chen K H, Huang S H. Manufacturing metal parts via indirect SLS of compositeelemental powders. Materials Science andEngineering A, 2007, 444(1―2): 146―152
doi: 10.1016/j.msea.2006.08.070
|
|
Dück J, Niebling F, Neeβe T, Otto A. Infiltration as post-processing of laser sintered metalparts. Powder Technology, 2004, 145(1): 62―68
doi: 10.1016/j.powtec.2004.05.006
|
|
Wu C M L, Han G W. Synthesisof an Al2O3/Al co-continuouscomposite by reactive melt infiltration. Materials Characterization, 2007, 58(5): 416―422
doi: 10.1016/j.matchar.2006.06.006
|
|
Maeda K, Childs T H C. Laser sintering (SLS) of hard metal powders for abrasion resistantcoatings. Journal of Materials ProcessingTechnology, 2004, 149(1―3): 609―615
doi: 10.1016/j.jmatprotec.2004.02.024
|
|
Kruth J P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Bindingmechanisms in selective laser sintering and selective laser melting. Rapid prototyping Journal, 2005, 11(1): 26―36
doi: 10.1108/13552540510573365
|
|
Kruth J P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting ofiron-based powder. Journal of MaterialsProcessing Technology, 2004, 149(1―3): 616―622
doi: 10.1016/j.jmatprotec.2003.11.051
|
|
Brandner J J, Hansjosten E, Anurjew E, Pfleging W, Schubert K. Microstructuredevices generation by selective laser melting. Proceedings of SPIE, 2007, 6459: 645911
doi: 10.1117/12.698249
|
|
Sun M, Lü L, Fuh J Y H. Microstructure and propertiesof Fe-base alloy fabricated using selective laser melting. Proceedings of SPIE, 2002, 4426: 139―142
doi: 10.1117/12.456802
|
|
Santos E, Osakada K, Shiomi M, Morita M, Abe F. Fabricationof titanium dental implants by selective laser melting. Proceedings of SPIE, 2004, 5662: 268―273
|
|
Lewis G K, Schlienger E. Practicalconsiderations and capabilities for laser assisted direct metal deposition. Materials and Design, 2000, 21(4): 417―423
|
|
Vasinonta A, Beuth J L, Griffith M. Process maps for predicting residualstress and melt pool size in the laser-based fabrication of thin-walledstructures. Journal of Manufacturing Scienceand Engineering, 2007, 129(1): 101―109
|
|
Milewski J O, Lewis G K, Thoma D J, Keel G I, Nemec R B, Reinert R A. Directed light fabrication of a solid metal hemisphereusing 5-axis powder deposition. Journalof Materials Processing Technology, 1998, 75(1―3): 165―172
|
|
Syed W U H, Pinkerton A J, Lin L. Simultaneous wire- and powder-feeddirect metal deposition: an investigation of the process characteristicsand comparison with single-feed methods. Journal of Laser Applications, 2006, 18(1): 65―72
|
|
Qi H, Mazumder J, Green L, Herrit G. Laser beam analysis in direct metal deposition process. Journal of Laser Applications, 2005, 17(3): 136―143
|
|
He X, Mazumder J. Transportphenomena during direct metal deposition. Journal of Applied Physics, 2007, 101(5): 053113
doi: 10.1063/1.2710780
|
|
Alimardani M, Toyserkani E, Huissoon J P. Three-dimensional numericalapproach for geometrical prediction of multilayer laser solid freeformfabrication process. Journal of Laser Applications, 2007, 19(1): 14―25
|
|
Wang X B, Chen J M, Jiao D M, Wu Q, Li G, Zuo T C. The beam characteristic of Nd:YAG frequency doublingin a KTP crystal by the resonant external ring cavity. Proceedings of SPIE, 2004, 5646: 636―642
|
|
Mie G. Beiträge zur optik trüber medien, speziellkolloidaler metallösungen. AnnalenDer Physik, 1908, 25: 377―445
|
|
Penndorf R. Tables of the refractive index for standard air and therayleigh scattering coefficient for the spectral region between 0.2and 20.0?μ and their application to atmospheric optics. Journal of the Optical Society of America, 1957, 47(2): 176―182
|
|
Sudiarta I W, Chylek P. Mie-scatteringformalism for spherical particles embedded in an absorbing medium. Journal of the Optical Society of America A, 2001, 18(6): 1275―1278
|
|
Du H. Mie-scattering calculation. Applied Optics, 2004, 43(9): 1951―1956
|
|
Yang W. Improved recursive algorithm for light scattering bya multilayered sphere. Applied Optics, 2003, 42(9): 1710―1720
|
|
Siu G G, Cheng L. Mie solutionof light scattering from spheres of radii up to 80λ with digit-array method. Journal of the Optical Society of America B, 2002, 19(8): 1922―1929
|
|
Stout B, Nevière M, Popov E. T matrix of the homogeneous anisotropic sphere: applications to orientation-averagedresonant scattering. Journal of the OpticalSociety of America A, 2007, 24(4): 1120―1130
|
|
Gusarov A V, Kruth J P. Modellingof radiation transfer in metallic powders at laser treatment. International Journal of Heat and Mass Transfer, 2005, 48(16): 3423―3434
|
|
Kernan B D, Sachs E M, Allen S M, Sachs C, Raffenbeul L, Pettavino A, Lorenz A. Homogenoussteel infiltration. Metallurgical and MaterialsTransactions A, 2005, 36(10): 2815―2827
|
|
Qin Z K, Yu J K, Zhang X Y. Infiltration kinetics of pressurelessinfiltration in SiCp/Al composites. Transactionsof Nonferrous Metals Society of China, 2005, 15(2): 371―374
|
|
Sohn H, Yang D Y. Drop-on-demanddeposition of superheated metal droplets for selective infiltrationmanufacturing. Materials Science and EngineeringA, 2005, 392(1―2): 415―421
|
|
Ambrosi D. Infiltration through deformable porous media. Zeitschrift für Angewandte Mathematik undMechanik, 2002, 82(2): 115―124
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|