Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 205-210    https://doi.org/10.1007/s12200-010-0004-1
Research articles
High voltage preparation, characterization, and optical properties of silver dendrites in PVA matrix
Biao DONG1,Hongwei SONG1,Xue BAI1,Yu WANG1,Lin XU1,Jiansheng CHEN1,Lianxiang YU2,
1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; 2.College of Chemistry, Jilin University, Changchun 130012, China;
 Download: PDF(232 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, we present a room-temperature synthesis of silver dendrites in a poly(vinyl alcohol) (PVA)-Ag composite system with the assistance of high voltage. In the silver dendrites, the nanounits are platelike, thus the surface plasmon absorption bands of silver dendrites are tuned from visible to ~800nm, which is due to the template function of PVA and the assistance of high voltage. Scanning electron microscope (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) data confirm that the structures are crystalline silver embedded in PVA. The absorption results indicate that the ratio of PVA and Ag do not influence the position but the intensity of the near-infrared (NIR) absorption. This material has potential use in the field of bio-application and infrared sensors.
Issue Date: 05 June 2010
 Cite this article:   
Biao DONG,Hongwei SONG,Xue BAI, et al. High voltage preparation, characterization, and optical properties of silver dendrites in PVA matrix[J]. Front. Optoelectron., 2010, 3(2): 205-210.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0004-1
https://academic.hep.com.cn/foe/EN/Y2010/V3/I2/205
Sun Y, Xia Y. Mechanisticstudy on the replacement reaction between silver nanostructures andchloroauric acid in aqueous medium. Journalof the American Chemical Society, 2004, 126(12): 3892―3901

doi: 10.1021/ja039734c
Sun Y, Gates B, Mayers B, Xia Y. Crystallinesilver nanowires by soft solution processing. Nano Letters, 2002, 2(2): 165―168

doi: 10.1021/nl010093y
Xia Y, Yang P. Chemistry andphysics of nanowires. Advanced Materials, 2003, 15(5): 351―352

doi: 10.1002/adma.200390086
Kou X, Zhang S, Yang Z, Tsung C K, Stucky G D, Sun L, Wang J, Yan C. Glutathione- and cysteine-induced transverseovergrowth on gold nanorods. Journal ofthe American Chemical Society, 2007, 129(20): 6402―6404

doi: 10.1021/ja0710508
Oldenburg S J, Averitt R D, Westcott S L, Halas N J. Nanoengineering of optical resonances. Chemical Physics Letters, 1998, 288(2―4): 243―247

doi: 10.1016/S0009-2614(98)00277-2
Sun Y, Mayers B T, Xia Y. Template-engaged replacementreaction: a one-step approach to the large-scale synthesis of metalnanostructures with hollow interiors. NanoLetters, 2002, 2(5): 481―485

doi: 10.1021/nl025531v
Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnology, 2001, 19(4): 316―317

doi: 10.1038/86684
Gao J, Fu J, Lin C, Lin J, Han Y, Yu X, Pan C. Formation andphotoluminescence of silver nanoparticles stabilized by a two-armedpolymer with a crown ether core. Langmuir, 2004, 20(22): 9775―9779

doi: 10.1021/la049197p
Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures withcontrolled shapes and properties. Accountsof Chemical Research, 2007, 40(10): 1067―1076

doi: 10.1021/ar7000974
Aizawa M, Cooper A M, Malac M, Buriak J M. Silver nano-inukshuks on germanium. Nano Letters, 2005, 5(5): 815―819

doi: 10.1021/nl048008k
Sun Y, Mayers B, Xia Y. Transformation of silvernanospheres into nanobelts and triangular nanoplates through a thermalprocess. Nano Letters, 2003, 3(5): 675―679

doi: 10.1021/nl034140t
Liu Z, Song H, Yu L, Yang L. Fabricationand near-infrared photothermal conversion characteristics of Au nanoshells. Applied Physics Letters, 2005, 86(11): 113109

doi: 10.1063/1.1874308
Zhou Y, Yu S, Wang C, Li X, Zhu Y, Chen Z. A novel ultraviolet irradiation photoreduction techniquefor the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 1999, 11(10): 850―852

doi: 10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-Z
Wang X, Naka K, Itoh H, Park S, Chujo Y. Synthesis of silver dendriticnanostructures protected by tetrathiafulvalene. Chemical Communications, 2002, (12): 1300―1301

doi: 10.1039/b203185j
Imai H, Nakamura H, Fukuyo T. Anisotropic growth of silvercrystals with ethylenediamine tetraacetate and formation of planarand stacked wires. Crystal Growth &Design, 2005, 5(3): 1073―1077

doi: 10.1021/cg0496585
Xiao J, Xie Y, Tang R, Chen M, Tian X. Novel ultrasonically assistedtemplated synthesis of palladium and silver dendritic nanostructures. Advanced Materials, 2001, 13(24): 1887―1891

doi: 10.1002/1521-4095(200112)13:24<1887::AID-ADMA1887>3.0.CO;2-2
Fleury V, Watters W A, Allam L, Devers T. Rapid electroplating of insulators. Nature, 2002, 416(6882): 716―719

doi: 10.1038/416716a
Wang S, Xin H. Fractal anddendritic growth of metallic Ag aggregated from different kinds ofγ-irradiated solutions. The Journalof Physical Chemistry B, 2000, 104(24): 5681―5685

doi: 10.1021/jp000225w
Socol Y, Abramson O, Gedanken A, Meshorer Y, Berenstein L, Zaban A. Suspensive electrode formationin pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 2002, 18(12): 4736―4740

doi: 10.1021/la015689f
Sun Y, Xia Y. Increased sensitivityof surface plasmon resonance of gold nanoshells compared to that ofgold solid colloids in response to environmental changes. Analytical Chemistry, 2002, 74(20): 5297―5305

doi: 10.1021/ac0258352
Washio I, Xiong Y, Yin Y, Xia Y. Reductionby the end groups of poly(vinyl pyrrolidone): a new and versatileroute to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745―1749

doi: 10.1002/adma.200600675
Chen S, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003―1007

doi: 10.1021/nl025674h
Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization,and self-assembly. The Journal of PhysicalChemistry B, 2002, 106(42): 10777―10781

doi: 10.1021/jp026376b
Yener D O, Sindel J, Randall C A, Adair J H. Synthesis of nanosized silver platelets in octylamine-waterbilayer systems. Langmuir, 2002, 18(22): 8692―8699

doi: 10.1021/la011229a
Sun Y, Xia Y. Triangularnanoplates of silver: synthesis, characterization, and use as sacrificialtemplates for generating triangular nanorings of gold. Advanced Materials, 2003, 15(9): 695―699

doi: 10.1002/adma.200304652
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed