Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 194-197    https://doi.org/10.1007/s12200-010-0005-0
Research articles
DFB LD manufactured by nanoimprint lithography
Lei WANG1,Yiwen ZHANG1,Fei QIU1,Zhimou XU1,Yanli ZHAO1,Yonglin YU1,Ning ZHOU2,Dingli WANG2,Wen LIU3,
1.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2.Accelink Technologies Co. Ltd., Wuhan 430074, China; 3.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;Accelink Technologies Co. Ltd., Wuhan 430074, China;
 Download: PDF(167 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Gratings of distributed feedback laser diodes (DFB LDs) have been successfully manufactured by nanoimprint lithography (NIL). Uniform gratings with periods of about 240 nm and phase-shifted in the center have been fabricated by a soft press NIL employing a polymer stamp technology. Moreover, the shape of the grating is rectangle, rather than sinusoidal by holography. The test results show good characteristics of the electrical and spectral output. The results of this study indicate that NIL has high potential for the manufacture of DFB LDs.
Issue Date: 05 June 2010
 Cite this article:   
Lei WANG,Yiwen ZHANG,Fei QIU, et al. DFB LD manufactured by nanoimprint lithography[J]. Front. Optoelectron., 2010, 3(2): 194-197.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0005-0
https://academic.hep.com.cn/foe/EN/Y2010/V3/I2/194
Kaden C, Griesinger U, Schweitzer H, Pilkuhn M H, Stath N. Fabrication of nonconventional distributed feedback lasers with variable gratingperiods and phase shifts by electron beam lithography. Journal of Vacuum Science and Technology B, 1992, 10(6): 2970–2973

doi: 10.1116/1.585954
Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25?nmvias and trenches in polymers. Applied Physics Letters, 1995, 67(21): 3114–3116

doi: 10.1063/1.114851
Chou S Y, Krauss P R, Zhang W, Guo L, Zhuang L. Sub-10?nm imprint lithography and applications. Journal of Vacuum Science and Technology B, 1997, 15(6): 2897–2904

doi: 10.1116/1.589752
Scheer H C, Schulz H. A contribution to the flow behaviour of thin polymer films during hotembossing lithography. MicroelectronicEngineering, 2001, 56(3,4): 311–332
Chen Y, Roy E, Kanamori Y, Belotti M, Decanini D. Soft nanoimprint lithography. Proceedings of SPIE, 2005, 5645: 283–288

doi: 10.1117/12.570745
Viheriala J, Viljanen M R, Kontio J, Leinonen T, Tommila J, Dumitrescu M, Niemi T, Pessa M. Soft stamp UV-nanoimprint lithography for fabrication of laser diodes. Proceedings of the SPIE, 2009, 7271: 727110-1–727110-10
Li M T, Chen L, Zhang W, Chou S Y. Pattern transfer fidelity of nanoimprint lithography on six-inchwafers. Nanotechnology, 2003, 14(1): 33–36

doi: 10.1088/0957-4484/14/1/308
Whelan C S, Kazior T E, Hur K Y. High rate CH4:H2 plasma etch processes for InP. Journal of Vacuum Science and Technology B, 1997, 15(5): 1728–1732

doi: 10.1116/1.589362
Schramm J E, Babic D I, Hu E L, Bowers J E, Merz J L. Fabrication of high-aspect-ratioInP-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching. Journal of Vacuum Science and Technology B, 1997, 15(6): 2031–2036

doi: 10.1116/1.589219
Yu W X, Yuan X C. Variable surface profile gratings in sol-gel glass fabricated by holographicinterference. Optics Express, 2003, 11(16): 1925–1930

doi: 10.1364/OE.11.001925
Davis M G, Dowd R F O. A transfer matrix method based large-signal dynamic model for multielectrodeDFB Lasers. IEEE Journal of Quantum Electronics, 1994, 30(11): 2458–2466

doi: 10.1109/3.333696
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed