Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 328-331    https://doi.org/10.1007/s12200-010-0096-7
Research articles
Aged rare earth doped silicates as optoelectronic material
Vandana RANGA1,H. N. ACHARYA2,R. K. KHANNA3,Anirudh KUMAR4,
1.Department of Physics, Government College, Ajmer 334001, India; 2.Emeritus Scientist, Department of Physics, Indian Institute of Technology, Kharagpur 721302, India; 3.Principal, BMIT, Jaipur 302022, India; 4.Chino Scientific Instruments Manufacturing, Ajmer 305004, India;
 Download: PDF(194 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Samples of various concentrations were prepared and kept unsintered for a period of three years to study the consistency of composition prepared and structural evolution of glass. The expanded peaks in the Raman spectra arise due to thermal agitation, and a Boltzmann type of distribution was expected in the silicate gels. The behavior of the gels during the dehydroxylation and dehydration is conditioned by its microstructure, which depends upon the physical conditions, i.e., pH, and drying conditions.
Issue Date: 05 September 2010
 Cite this article:   
Vandana RANGA,H. N. ACHARYA,R. K. KHANNA, et al. Aged rare earth doped silicates as optoelectronic material[J]. Front. Optoelectron., 2010, 3(3): 328-331.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0096-7
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/328
Brawer S A, White W B. Raman spectroscopic investigation of the structure of silicate glasses I: the binary silicateglasses. Journal of Chemical Physics, 1975, 63(6): 2421–2432

doi: 10.1063/1.431671
Walrafen G E, Stolen R H. Water and its relation to broken bond defects in fused silica. Journal of Chemical Physics, 1976, 64(6): 2623–2631

doi: 10.1063/1.432516
Walrafen G E. Raman spectral studies of mineral structure. Journal of Chemical Physics, 1964, 40(11): 3249–3256

doi: 10.1063/1.1724992
Hollander A, Williams J W. The molecular scattering of light from amorphous and crystallinesolids. Physical Review, 1931, 38(9): 1739–1744

doi: 10.1103/PhysRev.38.1739
Galeener F. Planar rings in vitreous silica. Journal of Non-Crystalline Solids, 1982, 49(1―3): 53–62

doi: 10.1016/0022-3093(82)90108-9
Mysen B O, Virgo D, Harrison W J, Scarfe C M. Solubility mechanisms of H2O in silicate melts at high pressures and temperatures: a Raman spectroscopicstudy. American Mineralogist, 1980, 65(9―10): 900–914
Mysen B O, Finger L W, Virgo D, Seifert F A. Curve fitting of Raman spectra in silicate glasses. American Mineralogist, 1982, 67(7―8): 686–695
Davis K M, Tomozawa M. An infrared spectroscopic study of water-related species in silica glasses. Journal of Non-Crystalline Solids, 1996, 201(3): 177–198

doi: 10.1016/0022-3093(95)00631-1
McMillan P F. Structural studies of silicate glasses and melts-applicationsand limitations of Raman spectroscopy. American Mineralogist, 1984, 69(7―8): 622–644
McMillan P F, Poe B T, Stanton T R, Remmele R L. A Raman spectroscopic study of H/D isotopically substituted hydrousaluminsilicate glasses. Physics and Chemistryof Minerals, 1993, 19(7): 454–459

doi: 10.1007/BF00203185
McMillan P F, Remmele R L. Hydroxyl sites in SiO2 glass: a note on infraredand Raman spectra. American Mineralogist, 1986, 71(5―6): 772–778
McMillan P F, Holloway J R. Water solubility in aluminosilicate melts. Contributions to Mineralogy and Petrology, 1987, 97(3): 320–332

doi: 10.1007/BF00371996
Brinker C J, Scherer G W. Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing. Boston: Academic Press, 1990, 572–588
Phillips J C. Microscopic origin of anomalously narrow Raman linesin network glasses. Journal of Non-CrystallineSolids, 1984, 63(3): 347–355

doi: 10.1016/0022-3093(84)90102-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed