Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 283-288    https://doi.org/10.1007/s12200-010-0099-4
Research articles
Switchable-multi-wavelength fiber laser based on dual-core all-solid photonic bandgap fiber
Jiaqi ZHAO,Zhi WANG,Yange LIU,Bo LIU,
Key Laboratory of Opto-Electronic Information and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China;
 Download: PDF(389 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, we propose and demonstrate a switchable multi-wavelength fiber laser based on a dual-core all-solid photonic bandgap fiber (PBGF) comb-like filter. The transmission properties of the dual-core all-solid PBGF are theoretically and experimentally investigated. Then the fiber ring laser based on the PBGF is realized and its wavelength-selective mechanisms are studied. By adjusting the polarization controller (PC), the number and location of the laser wavelength can be tunable.
Keywords photonic crystal fiber      all-solid photonic bandgap fiber      multi-wavelength fiber laser      
Issue Date: 05 September 2010
 Cite this article:   
Jiaqi ZHAO,Zhi WANG,Yange LIU, et al. Switchable-multi-wavelength fiber laser based on dual-core all-solid photonic bandgap fiber[J]. Front. Optoelectron., 2010, 3(3): 283-288.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0099-4
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/283
Luan F, George A K, Hedley T D, Pearce G J, Bird D M, Knight J C, Russell P S J. All-solid photonic bandgap fiber. Optics Letters, 2004, 29(20): 2369–2371

doi: 10.1364/OL.29.002369
Mangan B J, Knight J C, Birks T A, Russell P S, Greenaway A H. Experimental study of dual-core photoniccrystal fibre. Electronics Letters, 2000, 36(16): 1358–1359

doi: 10.1049/el:20000979
Saitoh K, Sato Y, Koshiba M. Coupling characteristics of dual-corephotonic crystal fiber couplers. Optics Express, 2003, 11(24): 3188–3195

doi: 10.1364/OE.11.003188
Laegsgaard J, Bang O, Bjarklev A. Photonic crystal fiber design for broadbanddirectional coupling. Optics Letters, 2004, 29(21): 2473–2475

doi: 10.1364/OL.29.002473
Wang Z, Taru T, Birks T A, Knight J C, Liu Y, Du J. Coupling in dual-core photonic bandgap fibers: theoryand experiment. Optics Express, 2007, 15(8): 4795–4803

doi: 10.1364/OE.15.004795
Du J B, Liu Y G, Wang Z, Liu Z Y, Zou B, Jin L, Liu B, Kai G Y, Dong X Y. Thermally tunable dual-core photonic bandgap fiber based on the infusionof a temperature-responsive liquid. Optics Express, 2008, 16(6): 4263–4269

doi: 10.1364/OE.16.004263
Laegsgaard J. Directional coupling in twin-core photonic bandgap fibers. Optics Letters, 2005, 30(24): 3281–3283

doi: 10.1364/OL.30.003281
Skorobogatiy M, Saitoh K, Koshiba M. Transverse light guides inmicrostructured optical fibers. Optics Letters, 2006, 31(3): 314–316

doi: 10.1364/OL.31.000314
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[3] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[4] Kaiwei LI,Ting ZHANG,Nan ZHANG,Mengying ZHANG,Jing ZHANG,Tingting WU,Shaoyang MA,Junying WU,Ming CHEN,Yi HE,Lei WEI. Integrated liquid crystal photonic bandgap fiber devices[J]. Front. Optoelectron., 2016, 9(3): 466-482.
[5] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[6] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[7] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
[8] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[9] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
[10] Yongzhao XU, Zhixin CHEN, Hongtao LI, Yanfen WEI. Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows[J]. Front Optoelec Chin, 2009, 2(3): 293-298.
[11] Shuqin LOU, Shujie LOU, Tieying GUO, Liwen WANG, Weiguo CHEN, Honglei LI, Shuisheng JIAN. Photonic crystal fiber with novel dispersion properties[J]. Front Optoelec Chin, 2009, 2(2): 170-177.
[12] WANG Zhi, LIU Yange, KAI Guiyun, LIU Bo, ZHANG Chunshu, JIN Long, FANG Qiang, YUAN Shuzhong, DONG Xiaoyi. Guided properties and applications of photonic bandgap fibers[J]. Front. Optoelectron., 2008, 1(1-2): 25-32.
[13] CHEN Wei, LI Jinyan, LI Shiyu, JIANG Zuowen, LI Haiqing, PENG Jinggang. High nonlinear photonic crystal fiber and its supercontinuum spectrum[J]. Front. Optoelectron., 2008, 1(1-2): 75-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed