Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 289-291    https://doi.org/10.1007/s12200-010-0100-2
Research articles
Deep notch filter based on liquid-filled photonic crystal fiber
Bing ZOU,Yange LIU,Zhi WANG,Bo LIU,
Key Laboratory of Opto-Electronic Information and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China;
 Download: PDF(166 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A deep notch filter in a liquid-filled photonic bandgap fiber (PBGF) realized via filling an erbium-doped solid core photonic crystal fiber with high-index liquid is proposed and demonstrated. The numerical investigation indicates that the notch is formed due to avoid-crossing effect between the fundamental mode and LP02 supermodes. The resonance wavelength of the filter can be tuned by adjusting the temperature of the liquid-filled PBGF and shifts toward short wavelength. The blue-shift speed average is 1.3 nm/°C.
Issue Date: 05 September 2010
 Cite this article:   
Bing ZOU,Yange LIU,Zhi WANG, et al. Deep notch filter based on liquid-filled photonic crystal fiber[J]. Front. Optoelectron., 2010, 3(3): 289-291.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0100-2
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/289
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963

doi: 10.1364/OL.22.000961
Knight J C, Broeng J, Birks T A, Russell P S J. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476–1478

doi: 10.1126/science.282.5393.1476
Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P S J. Highly birefringent photonic crystal fibers. Optics Letters, 2000, 25(18): 1325–1327

doi: 10.1364/OL.25.001325
Zou B, Liu Y, Du J, Wang Z, Han T, Xu J, Li Y, Liu B. Transmission bandwidth tunability of a liquid-filled photonic bandgap fiber. Chinese Physics Letters, 2009, 26(4): 044210

doi: 10.1088/0256-307X/26/4/044210
Kerbage C, Steinvurzel P, Reyes P, Westbrook P S, Windeler R S, Hale A, Eggleton B J. Highly tunable birefringent microstructured optical fiber. Optics Letters, 2002, 27(10): 842–844

doi: 10.1364/OL.27.000842
Larsen T T, Bjarklev A, Hermann D S, Broeng J. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 2003, 11(20): 2589–2596

doi: 10.1364/OE.11.002589
Haakestad M W, Alkeskjold T T, Nielsen M D, Scolari L, Riishede J, Engan H E, Bjarklev A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photonics Technology Letters, 2005, 17(4): 819–821

doi: 10.1109/LPT.2004.842793
Du J, Liu Y, Wang Z, Zou B, Liu B, Dong X. Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused. Optics Letters, 2008, 33(19): 2215–2217

doi: 10.1364/OL.33.002215
Noordegraaf D, Scolari L, L?gsgaard J, Rindorf L, Alkeskjold T T. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Optics Express, 2007, 15(13): 7901–7912

doi: 10.1364/OE.15.007901
Noordegraaf D, Scolari L, Laegsgaard J, Tanggaard Alkeskjold T, Tartarini G, Borelli E, Bassi P, Li J, Wu S T. Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Optics Letters, 2008, 33(9): 986–988

doi: 10.1364/OL.33.000986
Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173–190

doi: 10.1364/OE.8.000173
Koshiba M. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Transactions on Electronics, 2002, E85-C(4): 881–888
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed