Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 232-240    https://doi.org/10.1007/s12200-010-0101-1
Research articles
Circuit modeling of quantum dot semiconductor optical amplifier
Yi YU,Lirong HUANG,Meng XIONG,Dexiu HUANG,
College of Optoelectronic Science and Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
 Download: PDF(301 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A circuit model of a quantum dot semiconductor optical amplifier is proposed by employing standard rate equations. Using this model, the saturation property and dynamic performance of the quantum dot semiconductor optical amplifier are analyzed by PSPICE simulation. We also investigate wavelength conversion based on cross-gain modulation for the quantum dot semiconductor optical amplifier. The corresponding results are in agreement with the previous published works.
Issue Date: 05 September 2010
 Cite this article:   
Yi YU,Lirong HUANG,Meng XIONG, et al. Circuit modeling of quantum dot semiconductor optical amplifier[J]. Front. Optoelectron., 2010, 3(3): 232-240.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0101-1
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/232
Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold ofthree-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 1986, QE-22(9): 1915–1921

doi: 10.1109/JQE.1986.1073149
Willatzen M, Tanaka T, Arakawa Y, Singh J. Polarization dependence of optoelectronic propertiesin quantum dots and quantum wires-consequences of valence-band mixing. IEEE Journal of Quantum Electronics, 1994, 30(3): 640–653

doi: 10.1109/3.286150
Bhattacharya P. Self-organized quantum dots. Journal of Physics D, 2005, 38(13): 2055–2150

doi: 10.1088/0022-3727/38/13/E01
Huang X, Stintz A, Li H, Lester L F, Cheng J, Malloy K J. Passive mode-locking in 1.3?μm two-sectionInAs quantum dot lasers. Applied Physics Letters, 2001, 78(19): 2825–2827

doi: 10.1063/1.1371244
Ben-Ezra Y, Haridim M, Lembrikov B I. Theoretical analysis of gain-recoverytime and chirp in QD-SOA. IEEE Photonics Technology Letters, 2005, 17(19): 1803–1805

doi: 10.1109/LPT.2005.853030
Li X X, Li G F. Comments on “theoretical analysis of gain-recovery time and chirp inQD-SOA”. IEEE Photonics TechnologyLetters, 2006, 18(22): 2434–2435

doi: 10.1109/LPT.2006.885655
Huang L R, Yu Y, Tian P, Huang D X. Polarization-insensitive quantum-dot coupled quantum-well semiconductoroptical amplifier. Semiconductor Scienceand Technology, 2009, 24(1): 1–7

doi: 10.1088/0268-1242/24/1/015009
Li X X, Li G F. Static gain, optical modulation response, and nonlinear phase noise in saturatedquantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(5): 499–505

doi: 10.1109/JQE.2009.2013100
Uskov A V, O’Reilly E P, Laemmlin M, Ledentsov N N, Bimberg D. On gain saturation in quantum dot semiconductor optical amplifiers. Optics Communications, 2005, 248(1―3): 211–219

doi: 10.1016/j.optcom.2004.12.001
Sugawara M, Mukai K, Nakata Y, Ishikawa H, Sakamoto A. Effect of homogeneous broadeningof optical gain on lasing spectra in self-assembled InxGa1–xAs/GaAs quantum dot lasers. Physical Review B: Condensed Matter and MaterialsPhysics, 2001, 61(11): 7595–7603

doi: 10.1103/PhysRevB.61.7595
Manning R J, Ellis A D, Poustie A J, Blow K J. Semiconductor laser amplifiers for ultrafast all-optical signal processing. Journal of the Optical Society of America B: OpticalPhysics, 1997, 14(11): 3204–3216

doi: 10.1364/JOSAB.14.003204
Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for high speed digital information processing. Science, 1999, 286(5444): 1523–1528

doi: 10.1126/science.286.5444.1523
Mena P V, Kang S M, Temple T A D. Rate-equation-based lasermodels with a single solution regime. Journal of Lightwave Technology, 1997, 15(4): 717–730

doi: 10.1109/50.566695
Mena P V. Circuit-level modeling and simulation of semiconductorlasers. Dissertation for the Doctoral Degree, University of Illinois at Chicago, 1998
Jou J J, Liu C K, Lee S L. A unified circuit model for static anddynamic analyses of semiconductor optical amplifiers and laser diodes. Solid-State Electronics, 2007, 51(3): 360–365

doi: 10.1016/j.sse.2007.01.035
Lu M F, Deng J S, Juang C, Jou M J, Lee B J. Equivalent circuit modelof quantum well lasers. IEEE Journal of Quantum Electronics, 1995, 31(8): 418–1422

doi: 10.1109/3.400392
Yavari M H, Ahmadi V. Circuit-level implementation of semiconductor self-assembled quantum dot laser. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(3): 774–779
Maram R, Baghban H, Rasooli H, Ghorbani R, Rostami A. Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamicbehaviour and saturation properties. Journal of Optics A: Pure and Applied Optics, 2009, 11(10): 105205

doi: 10.1088/1464-4258/11/10/105205
Gioannini M, Montrosset I. Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE Journal of Quantum Electronics, 2007, 43(10): 941–949

doi: 10.1109/JQE.2007.904306
Berg T W, Bischoff S, Magnusdottir I, Mork J. Ultrafast gain recovery and modulation limitations inself-assembled quantum-dot devices. IEEE Photonics Technology Letters, 2001, 13(6): 541–543

doi: 10.1109/68.924013
Ben-Ezra Y, Lembrikov B I, Haridim M. Acceleration of gain recoveryand dynamics of electrons in QD-SOA. IEEE Journal of Quantum Electronics, 2005, 41(10): 1268–1273

doi: 10.1109/JQE.2005.854131
Kim J, Kondratko P K, Chuang S L, Walter G, Holonyak N, Heller R D, Zhang X B, Dupuis R D. Tunneling injection quantum-dot lasers with polarization-dependentphoton-mediated carrier redistribution and gain narrowing. IEEE Journal of Quantum Electronics, 2005, 41(11): 1369–1379

doi: 10.1109/JQE.2005.857067
Houbavlis T, Zoiros K E, Kalyvas M, Theophilopoulos G, Bintjas C, Yiannopoulos K, Pleros N, Vlachos K, Avramopoulos H, Schares L, Occhi L, Guekos G, Taylor J R, Hansmann S, Miller W. All-optical signal processing and applications withinthe esprit project DO_ALL. Journal of Lightwave Technology, 2005, 23(2): 781–801

doi: 10.1109/JLT.2004.838854
Uskov A V, Mork J, Tromborg B, Berg T W, Magnusdottir I, O'Reilly E P. On high-speed cross-gain modulation without pattern effectsin quantum dot semiconductor optical amplifiers. Optics Communications, 2003, 227(4―5): 363–369

doi: 10.1016/j.optcom.2003.09.052
Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulationof quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(3): 240–248

doi: 10.1109/JQE.2008.2010881
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed