Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 321-327    https://doi.org/10.1007/s12200-010-0102-0
Research articles
Investigation of Al Schottky junction on n-type CdS film deposited on polymer substrate
Sandhya GUPTA,Dinesh PATIDAR,Mahesh BABOO,Kananbala SHARMA,N. S. SAXENA,
Semiconductor and Polymer Science Laboratory, University of Rajasthan, Jaipur 302055, India;
 Download: PDF(244 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A systematic study has been made on the behavior of Al/n-CdS thin film junction on flexible polymer substrate (polyethylene terephthalate, PET) grown using thermal evaporation method. Temperature dependence of I−V measurements for this junction has been done which closely follow the equations of Schottky barrier junction dominated by thermionic emission mechanism. Intrinsic and contact properties such as barrier height, ideality factor and series resistance have been calculated from I−V characteristics. The barrier height of Al/n-CdS junction is found to increase with increase in temperature whereas ideality factor and series resistance decrease with increase in temperature.
Issue Date: 05 September 2010
 Cite this article:   
Sandhya GUPTA,Dinesh PATIDAR,Mahesh BABOO, et al. Investigation of Al Schottky junction on n-type CdS film deposited on polymer substrate[J]. Front. Optoelectron., 2010, 3(3): 321-327.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0102-0
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/321
DeKlerk J, Kelly R F. Vapor-deposited thin film piezoelectric transducers. Review of Scientific Instruments, 1965, 36(4): 506–510

doi: 10.1063/1.1719610
Andrews A M, Haden C R. Electroluminescence in vacuum evaporated cadmium sulfide. Proceedings of the IEEE, 1969, 57(1): 99–100

doi: 10.1109/PROC.1969.6891
Dresner J, Shallcross F V. Ractification and space-charge-limited currents in CdS films. Solid-State Electronics, 1962, 5(4): 205–210

doi: 10.1016/0038-1101(62)90103-X
Mohanchandra K P, Uchil J. Electrical properties of CdS and CdSe films deposited on vibrating substrates. Journal of Applied Physics, 1998, 84(1): 306–310

doi: 10.1063/1.368028
Ferekides C S, Marinskiy D, Marinskaya S, Tetali B, Oman D, Morel D L. CdS films prepared by the close-spaced sublimation and their influence on CdTe/CdS solar cell performance. In: Proceedings of the Twenty Fifth IEEE PhotovoltaicSpecialists Conference. 1996, 751–756
Uda H, Yonezawa H, Ohtsubo Y, Kosaka M, Sonomura H. Thin CdS films prepared by metalorganic chemical vapor deposition. Solar Energy Materials and Solar Cells, 2003, 75(1―2): 219–226

doi: 10.1016/S0927-0248(02)00163-0
Fujita S, Kawakami Y. MO(GS)MBE and photo-MO(GS)MBE of II-VI semiconductors. Journal of Crystal Growth, 1996, 164(1―4): 196–201

doi: 10.1016/0022-0248(95)01061-0
Gluszak E A, Hinckley S. Growth of ultrathin chemically-deposited CdS films from an ammonia-thioureareaction system. In: Proceedings of Conferenceon Optoelectronic and Microelectronic Materials and Devices. 2000, 218–221
Pence S, Bates C W Jr, Varner L. Morphological features in films of CdS prepared by chemical spray pyrolysis. Materials Letters, 1995, 23(4―6): 195–201

doi: 10.1016/0167-577X(95)00042-9
Anuar K, Zulkarnain Z, Saravanan N, Nazri M, Sharin R. Effects of electrodeposition periods and solution temperatures towards theproperties of CdS thin films prepared in the presence of sodium Tartrate. Materials Science, 2005, 11(2): 101–104
Lee J H, Lee D J. Effects of CdCl2 treatment on the properties of CdS filmsprepared by r.f. magnetron sputtering. Thin Solid Films, 2007, 515(15): 6055–6059

doi: 10.1016/j.tsf.2006.12.069
Chavez H, Jorden M, McClure J C, Lush G, Singh V P. Physical and electrical characterization of CdS films deposited by vacuum evaporation,solution growth and spray pyrolysis. Journal of Materials Science Materials in Electronics, 1997, 8(3): 151–154

doi: 10.1023/A:1018537928315
Mathew X, Enriquez J P, Romeo A, Tiwari A N. CdTe/CdS solar cells on flexible substrates. Solar Energy, 2004, 77(6): 831–838

doi: 10.1016/j.solener.2004.06.020
Patel B K, Nanda K K, Sahu S N. Interface characterization of nanocrystallineCdS/Au junction by current-voltage and capacitance-voltage studies. Journal of Applied Physics, 1999, 85(7): 3666–3670

doi: 10.1063/1.369731
Gupta S, Patidar D, Saxena N S, Sharma K, Sharma T P. Electrical study of Cu-CdS and Zn-CdS Schottky junction. Optoelectronics and advanced materials―Rapidcommunications, 2008, 2(4): 205–208
Farag A A M, Yahia I S, Fadel M. Electrical and photovoltaic characteristicsof Al/n-CdS Schottky diode. International Journal of Hydrogen Energy, 2009, 34(11): 4906–4913

doi: 10.1016/j.ijhydene.2009.03.034
Callister W D. Materials Science and Engineering: An Introduction, InCharacteristics, Applications and Processing of Polymers. New York: John Wiley & Sons, 2000
Lalitha S, Sathyamoorthy R, Senthilarasu S, Subbarayan A, Natarajan K. Characterization of CdTe thin film―dependence of structural and optical propertieson temperature and thickness. Solar Energy Materials and Solar Cells, 2004, 82(1―2): 187–199

doi: 10.1016/j.solmat.2004.01.017
Sze S M. Physics of Semiconductor Devices. 2nd ed. New York: Wiley Interscience, 1981, 255
Gümüs A, Türüt A, Yalcin N. Temperature dependent barriercharacteristics of CrNiCo alloy Schottky contacts on n-type molecularepitaxy GaAs. Journal of Applied Physics, 2002, 91(1): 245–250

doi: 10.1063/1.1424054
Chand S, Kumar J. Current-voltage characteristics and barrier parameters of Pd2Si/p-Si(111) Schottkydiodes in a wide temperature range. Semiconductor Science and Technology, 1995, 10(12): 1680–1688

doi: 10.1088/0268-1242/10/12/019
Tung R T. Electron transport of inhomogeneous Schottky barriers. Applied Physics Letters, 1991, 58(24): 2821–2823

doi: 10.1063/1.104747
Tung R T. Electron transport at metal-semiconductor interfaces:general theory. Physical Review B, 1992, 45(23): 13509–13523

doi: 10.1103/PhysRevB.45.13509
Tung R T, Levi A F, Sullivan J P, Schrey F. Schottky-barrier inhomogeneity at epitaxial NiSi2 interfaces on Si(100). Physical Review Letters, 1991, 66(1): 72–75

doi: 10.1103/PhysRevLett.66.72
Werner J H, Güttler H H. Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics, 1991, 69(3): 1522–1533

doi: 10.1063/1.347243
Sullivan J P, Tung R T, Pinto M R, Graham W R. Electron transport of inhomogeneous Schottky barriers: a numericalstudy. Journal of Applied Physics, 1991, 70(12): 7403–7424

doi: 10.1063/1.349737
Pattabi M, Krishnan S, Ganesh, Mathew X. Effect of temperature and electron irradiation on theI?V characteristics of Au/CdTe Schottky diodes. Solar Energy, 2007, 81(1): 111–116

doi: 10.1016/j.solener.2006.06.004
Zhu S, Van Meirhaeghe R L, Detavernier C, Cardon F, Ru G P, Qu X P, Li B Z. Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111). Solid-State Electronics, 2000, 44(4): 663–671

doi: 10.1016/S0038-1101(99)00268-3
Karadeniz S, Sahin M, Tugluoglu N, Safak H. Temperature dependent barrier characteristics of Ag/p-SnS Schottky barrier diodes. Semiconductor Science and Technology, 2004, 19(9): 1098–1103

doi: 10.1088/0268-1242/19/9/005
Marsal L F, Pallarès J, Correig X, Orpella A, Bardés D, Alcubilla R. Current transport mechanismsin n-type amorphous silicon carbon on p-type crystalline silicon (a-Si0.8C0.2:H/c-Si) heterojunctiondiodes. Semiconductor Science and Technology, 1998, 13(10): 1148–1153

doi: 10.1088/0268-1242/13/10/016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed