Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 317-320    https://doi.org/10.1007/s12200-010-0104-y
Research articles
Tunable wettability of metallic films with assistance of porous anodic aluminum oxide
Dongdong LI1,Chuanhai JIANG2,Xin REN2,Jiankun ZHOU3,
1.Division of Energy and Environmental Research, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China;School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2.School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3.School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;Advanced Technology Institute, Technology Center of Baosteel, Shanghai 201900, China;
 Download: PDF(200 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The present work demonstrates a simple method to prepare nanostructured Ni films with different morphologies with the assistance of porous anodic aluminum oxide (AAO) membranes. A great distinction is observed as the Ni films deposited onto the top and bottom sides of AAO membranes. The wetting properties of as-prepared membranes are investigated by measuring the contact angles of water on the surfaces. Results show that the static water contact angle changes dramatically from 124°±1° to 45°±1° on different Ni films, implying a change of the wettability from hydrophobicity to hydrophilicity affected by the surface patterns. This versatile approach can be conducted on various materials with potential applications in a broad range of fields.
Issue Date: 05 September 2010
 Cite this article:   
Dongdong LI,Chuanhai JIANG,Xin REN, et al. Tunable wettability of metallic films with assistance of porous anodic aluminum oxide[J]. Front. Optoelectron., 2010, 3(3): 317-320.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0104-y
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/317
Ko H, Zhang Z X, Chueh Y L, Ho J C, Lee J, Fearing R S, Javey A. Wet and dryadhesion properties of self-selective nanowire connectors. Advanced Functional Materials, 2009, 19(19): 3098―3102

doi: 10.1002/adfm.200901178
Lu J G, Chang P C, Fan Z Y. Quasi-one-dimensional metal oxide materials— synthesis, properties and applications. Materials Science and Engineering: R: Reports, 2006, 52(1―3): 49―91

doi: 10.1016/j.mser.2006.04.002
Hurst S J, Payne E K, Qin L D, Mirkin C A. Multisegmented one-dimensional nanorods prepared by hard-templatesynthetic methods. Angewandte Chemie, 2006, 45(17): 2672―2692

doi: 10.1002/anie.200504025
Martin C R. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266(5193): 1961―1966

doi: 10.1126/science.266.5193.1961
Li D, Jiang C, Jiang J, Lu J G. Self-assembly of periodic serrated nanostructures. Chemistry of Materials, 2009, 21(2): 253―258

doi: 10.1021/cm8022242
Li D, Thompson R S, Bergmann G, Lu J G. Template-based synthesis and magnetic properties of cobaltnanotube arrays. Advanced Materials, 2008, 20(23): 4575―4578

doi: 10.1002/adma.200801455
Liu Z W, Chang P C, Chang C C, Galaktionov E, Bergmann G, Lu J G. Shape anisotropy and magnetization modulation in hexagonalcobalt nanowires. Advanced Functional Materials, 2008, 18(10): 1573―1578

doi: 10.1002/adfm.200701010
Qu M, Zhao G Y, Wang Q, Cao X P, Zhang J. Fabrication of superhydrophobicsurfaces by a Pt nanowire array on Ti/Si substrates. Nanotechnology, 2008, 19(19): 055707

doi: 10.1088/0957-4484/19/05/055707
Taberna P L, Mitra S, Poizot P, Simon P, Tarascon J-M. High rate capabilities Fe3O4-based Cu nano-architecturedelectrodes for lithium-ion battery applications. Nature Materials, 2006, 5(7): 567―573

doi: 10.1038/nmat1672
Ding G Q, Shen W Z, Zheng M J, Xu W L, He Y L, Guo Q X. Fabrication of highly ordered nanocrystalline Si:H nanodotsfor the application of nanodevice arrays. Journal of Crystal Growth, 2005, 283(3―4): 339―345

doi: 10.1016/j.jcrysgro.2005.06.052
Lei Y, Chim W K, Weissmuller J, Wilde G, Sun H P, Pan X Q. Ordered arrays of highly oriented single-crystalsemiconductor nanoparticles on silicon substrates. Nanotechnology, 2005, 16(9): 1892―1898

doi: 10.1088/0957-4484/16/9/079
Li A P, Müller F, Birner A, Nielsch K, G?sele U. Hexagonalpore arrays with a 50―420?nm interpore distance formed by self-organizationin anodic alumina. Journal of Applied Physics, 1998, 84(11): 6023―6026

doi: 10.1063/1.368911
Lee W, Ji R, G?sele U, Nielsch K. Fast fabrication of long-range ordered porous aluminamembranes by hard anodization. Nature Materials, 2006, 5(9): 741―747

doi: 10.1038/nmat1717
Barthlott W, Neinhuis C. Purityof the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1―8

doi: 10.1007/s004250050096
Parkin I P, Palgrave R G. Self-cleaning coatings. Journal of MaterialsChemistry, 2005, 15(17): 1689―1695

doi: 10.1039/b412803f
Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H, Fotakis C. Biomimetic artificial surfaces quantitatively reproducethe water repellency of a lotus leaf. AdvancedMaterials, 2008, 20(21): 4049―4054

doi: 10.1002/adma.200800651
Blossey R. Self-cleaning surfaces — virtual realities. Nature Materials, 2003, 2(5): 301―306

doi: 10.1038/nmat856
Callies M, Quere D. On water repellency. Soft Matter, 2005, 1(1): 55―61

doi: 10.1039/b501657f
Nakajima A, Hashimoto K, Watanabe T. Recent studies on super-hydrophobicfilms. Monatshefte Fur Chemie, 2001, 132(1): 31―41

doi: 10.1007/s007060170142
Hsu S H, Sigmund W M. Artificial hairy surfaces with a nearly perfect hydrophobic response. Langmuir, 2010, 26(3): 1504―1506

doi: 10.1021/la903813g
Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936, 28: 988―994

doi: 10.1021/ie50320a024
Cassie A B D, Baxter S. Wettabilityof porous surfaces. Transactions of theFaraday Society, 1944, 40: 0546―0550
Krupenkin T N, Taylor J A, Schneider T M, Yang S. From rolling ball to complete wetting: the dynamic tuningof liquids on nanostructured surfaces. Langmuir, 2004, 20(10): 3824―3827

doi: 10.1021/la036093q
Dorrer C, Ruhe J. Wetting ofsilicon nanograss: from superhydrophilic to superhydrophobic surfaces. Advanced Materials, 2008, 20(1): 159―163

doi: 10.1002/adma.200701140
Furstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and self-cleaning properties of artificial superhydrophobicsurfaces. Langmuir, 2005, 21(3): 956―961

doi: 10.1021/la0401011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed