Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 354-358    https://doi.org/10.1007/s12200-010-0108-7
REVIEW ARTICLE
Key technologies on microwave photonic filter
Li PEI(), Chunhui QI, Tigang NING, Song GAO, Jing LI
Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(209 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microwave photonic filter (MPF) as one of the key devices in the radio-on-fiber (ROF) system has attracted much interest recently. Some key technologies of MPF including the coherence, quality factor (Q) and reconfigurability are introduced. The difference between the incoherent and coherent MPF (ICMPF and CMPF) is given, and the methods to realize an ICMPF are also introduced. Higher Q factor MPF can be developed with more taps, and it is proved by simulation. Then the methods of finite and infinite impulse response MPF (FIRMPF and IIRMPF) are both given. At last, the reconfigurability is verified by four kinds of window functions.

Keywords microwave photonic filter (MPF)      radio-on-fiber (ROF)      coherent      Q value      reconfigurability     
Corresponding Author(s): PEI Li,Email:lipei@bjtu.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Chunhui QI,Tigang NING,Song GAO, et al. Key technologies on microwave photonic filter[J]. Front Optoelec Chin, 2010, 3(4): 354-358.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0108-7
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/354
Fig.1  Principle layout of MPF
Fig.2  Different responses with different number of taps. (a) Three taps; (b) eight taps
Fig.3  Different weighting function. (a) Rectangle; (b) Hamming; (c) Hanning; (d) triangle
Fig.4  Reconfigurability of MPF with different weighting functions of eight taps. (a) Rectangle; (b) Hamming; (c) Hanning; (d) triangle
1 Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology , 2006, 24(1): 201–229
doi: 10.1109/JLT.2005.860478
2 Hunter D B, Minasian R A, Krug P A. Tunable optical transversal filter based on chirped gratings. Electronics Letters , 1995, 31(25): 2205–2207
doi: 10.1049/el:19951495
3 Vidal B, Polo V, Corral J L, Marti J. Harmonic suppressed photonic microwave filter. Journal of Lightwave Technology , 2003, 21(12): 3150–3154
doi: 10.1109/JLT.2003.822255
4 Feng X, Lu C, Tam H Y, Wai P K A. Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser. IEEE Photonics Technology Letters , 2007, 19(17): 1334–1336
doi: 10.1109/LPT.2007.902694
5 Mora J, Ortega B, Capmany J, Cruz J, Andres M, Pastor D, Sales S. Automatic tunable and reconfigurable fiberoptic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings. Optics Express , 2002, 10(22): 1291–1298
6 Pastor D, Ortega B, Capmany J, Sales S, Martinez A, Mu?oz P. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings. Optics Letters , 2003, 28(19): 1802–1804
doi: 10.1364/OL.28.001802
7 Polo V, Vidal B, Corral J L, Marti J. Novel tunable photonic microwave filter based on laser arrays and N/spl times/N AWG-based delay lines. IEEE Photonics Technology Letters , 2003, 15(4): 584–586
doi: 10.1109/LPT.2003.809297
8 Pastor D, Capmany J. Fibre optic tunable transversal filter using laser array and linearly chirped fibre grating. Electronics Letters , 1998, 34(17): 1684–1685
doi: 10.1049/el:19981144
9 Pastor D, Capmany J, Ortega B. New fiber-optic microwave filters with complete tunability and reconfiguration properties using a linearly chirped fiber grating feeded by a laser array. In: Proceedings of Optical Fiber Communication Conference 1999 and the International Conference on Integrated Optics and Optical Fiber Communication . 1999, 4: 165–167
10 Capmany J, Pastor D, Ortega B. Efficient sidelobe suppression by source power apodisation in fibre optic microwave filters composed of linearly chirped fibre grating by laser array. Electronics Letters , 1999, 35(8): 640–642
doi: 10.1049/el:19990454
11 Capmany J, Pastor D, Ortega B. Experimental demonstration of tunability and transfer function reconfiguration in fibre-optic microwave filters composed of linearly chirped fibre grating fed by laser array. Electronics Letters , 1998, 34(23): 2262–2264
doi: 10.1049/el:19981558
12 Zeng F, Wang J, Yao J. All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings. Optics Letters , 2005, 30(17): 2203–2205
doi: 10.1364/OL.30.002203
13 Capmany J, Pastor D, Martinez A, Ortega B, Sales S. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Optics Letters , 2003, 28(16): 1415–1417
doi: 10.1364/OL.28.001415
14 Loayssa A, Capmany J. Incoherent microwave photonic filters with complex coefficients using stimulated Brillouin scattering. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference . 2006, OFB2
15 Sagnes M, Loayssa A, Capmany J, Benito D, Sales S, Garcia-Olcina R. Tunable complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow-band optical filtering. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference . 2007, OWU5
16 Ou H, Zhu K, Hu Y, He S. Tunable and reconfigurable multi-tap microwave photonic filter with negative coefficients based on a single laser diode. In: Proceedings of Asia Optical Fiber Communication and Optoelectronic Exposition and Conference . 2008, SaJ4
17 Zhu K, Ou H, Hu Y, Fu H. Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures. In: Proceedings of Asia Optical Fiber Communication and Optoelectronic Exposition and Conference . 2008, SaJ3
18 Hunter D B, Minasian R A. High Q microwave optical filters using an active fiber grating pair structure. In: Proceedings of Conference on Optical Fiber Communication . 1997, 340–341 .
19 Capmany J, Mora J, Ortega B, Pastor D. High-Q microwave photonic filter with a tuned modulator. Optics Letters , 2005, 30(17): 2299–2301
doi: 10.1364/OL.30.002299
20 Ortega B, Mora J, Capmany J, Pastor D, Garcia-Olcina R, Sales S. Highly selective microwave photonic filters based on new FBGs-EDF recirculating cavities and tuned modulators. In: Proceedings of International Topical Meeting on Microwave Photonics . 2005, 209–212
[1] Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI. Review on partially coherent vortex beams[J]. Front. Optoelectron., 2019, 12(3): 229-248.
[2] Hongxiang WANG, Tiantian LUO, Yuefeng JI. Multi-channel phase regeneration of QPSK signals based on phase sensitive amplification[J]. Front. Optoelectron., 2019, 12(1): 24-30.
[3] Jianjun YU. Spectrally efficient single carrier 400G optical signal transmission[J]. Front. Optoelectron., 2019, 12(1): 15-23.
[4] Xinwei DU, Pooi-Yuen KAM, Changyuan YU. Joint timing and frequency synchronization in coherent optical OFDM systems[J]. Front. Optoelectron., 2019, 12(1): 4-14.
[5] John C. CARTLEDGE. Performance of coherent optical fiber transmission systems[J]. Front. Optoelectron., 2018, 11(2): 128-133.
[6] Yingqin PENG,Yuli CHEN,Qi SUI,Dawei WANG,Dongyu GENG,Freddy FU,Zhaohui LI. In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser[J]. Front. Optoelectron., 2016, 9(3): 526-530.
[7] Yunsong ZHAO,Yeyu ZHU,Lin ZHU. Integrated coherent combining of angled-grating broad-area lasers[J]. Front. Optoelectron., 2016, 9(2): 290-300.
[8] Ming LUO,Qi MO,Xiang LI,Rong HU,Ying QIU,Cai LI,Zhijian LIU,Wu LIU,Huang YU,Wei DU,Jing XU,Zhixue HE,Qi YANG,Shaohua YU. Transmission of 200 Tb/s (375 × 3 × 178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF[J]. Front. Optoelectron., 2015, 8(4): 394-401.
[9] Jean TEMGA,Deming LIU,Minming ZHANG. Improved pilot data aided feed forward based on maximum likelihood for carrier phase jitter recovery in coherent optical orthogonal frequency division multiplexing[J]. Front. Optoelectron., 2014, 7(4): 493-500.
[10] Changyuan YU,Pooi-Yuen KAM,Shengjiao CAO. Carrier recovery in coherent receiver of optical orthogonal frequency division multiplexing system[J]. Front. Optoelectron., 2014, 7(3): 348-358.
[11] Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Front Optoelec, 2013, 6(1): 30-45.
[12] Qing WAN, Chunhui HUANG. A novel Stokes parameters coding scheme for free-space coherent optical communication[J]. Front Optoelec, 2012, 5(2): 231-236.
[13] Lina ZHOU, Xinliang ZHANG, Enming XU. Q value analysis of microwave photonic filters[J]. Front Optoelec Chin, 2009, 2(3): 269-278.
[14] YE Yunxia, FAN Dianyuan. Incoherent radiation of amplifying random media[J]. Front. Optoelectron., 2008, 1(1-2): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed