|
|
|
Fully transparent flexible transistors built
on metal oxide nanowires |
| Di CHEN1,Guozhen SHEN1,Jing XU2, |
| 1.Wuhan National Laboratory
for Optoelectronics, College of Optoelectronic Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China; 2.Wuhan National Laboratory
for Optoelectronics, College of Optoelectronic Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China;School of Chemistry
and Chemical Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; |
|
|
|
|
Abstract Transparent electronics has attracted great research efforts in recent years due to its potential to make significant impact in many area, such as next generation displays, ultraviolet (UV) detectors, solar cells, charge-coupled devices (CCDs), and so on. Central to the realization of transparent electronics is the development of high performance fully transparent thin-film transistors (TFTs). One-dimensional (1-D) nanostructures have been the focus of current researches due to their unique physical properties and potential applications in nanoscale elec-tronics and optoelectronics. Among 1-D nanostructures, transparent metal oxide nanowires are one of the best candidates to make fully transparent TFTs. We provide in this paper the most recent development on the fabrication of fully transparent TFT using metal oxide nanowires as the device elements. First, the review article gives a general introduction about the development of transparent elec-tronics using different kinds of materials as the devices elements, including organic semiconductors, metal oxide thin films, and metal oxide nanowires. Second, the growth of metal oxide nanowires using vapor phase methods governed by two different growth mechanisms: vapor-solid mechanism and vapor-liquid-solid mechanism, respectively, are described. Third, the fabrication of transparent and flexible TFTs using different metal oxides nanowires is comprehensively described. In conclusion, the challenges and prospects for the future are discussed.
|
|
Issue Date: 05 September 2010
|
|
|
Wager J F. Transparent electronics. Science, 2003, 300(5623): 1245–1246
doi: 10.1126/science.1085276
|
|
Wagner J F, Keszler D A, Presley R E. Transparent Electronics. New York: Springer, 2008
|
|
Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conductionin transparent thin films of CuAlO2. Nature, 1997, 389(6654): 939–942
doi: 10.1038/40087
|
|
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexiblethin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488–492
doi: 10.1038/nature03090
|
|
Chiang H Q, Wager J F, Hoffman R L, Jeong J, Keszler D A. High mobility transparentthin-film transistors with amorphous zinc tin oxide channel layers. Applied Physics Letters, 2005, 86(1): 013503
doi: 10.1063/1.1843286
|
|
G?rrn P, Sander M, Meyer J, Kroger M, Becker E, Johannes H H, Kowalsky W, Riedl T. Towards see-throughdisplays: fully transparent thin-film transistors driving transparentorganic light-emitting diodes. Advanced Materials, 2006, 18(6): 738–741
|
|
Wang L, Yoon M H, Lu G, Yang Y, Facchetti A, Marks T J. High-performance transparent inorganic-organic hybrid thin-film n-typetransistors. Nature Materials, 2006, 5(11): 893–900
doi: 10.1038/nmat1755
|
|
Lin Y Y, Gundlach D J, Nelson S, Jackson T N. Stacked pentacene layer orgainc thin-film transistorswith improved characteristics. IEEE Electron Device Letters, 1997, 18(12): 606–608
doi: 10.1109/55.644085
|
|
Bao Z, Lovinger A J, Dodabalapur A. Organic field-effect transistorswith high mobility based on copper phthalocyanine. Applied Physics Letters, 1996, 69(20): 3066–3068
doi: 10.1063/1.116841
|
|
Katz H E. Organic molecular solids as thin film transistor semiconductors. Journal of Materials Chemistry, 1997, 7(3): 369–376
doi: 10.1039/a605274f
|
|
Horowitz G. Organic field-effect transistors. Advanced Materials, 1998, 10(5): 365–377
doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
|
|
Garnier F. Thin film transistors based on organic conjugated semiconductors. Chemical Physics, 1998, 227(1―2): 253–262
|
|
Choi Y W, Kim I D, Tuller H L, Akinwande A I. Low-voltage organic transistors and depletion-load inverters withhigh-K pyrochlore BZN gate dielectricon polymer substrate. IEEE Transactionson Electron Devices, 2005, 52(12): 2819–2824
doi: 10.1109/TED.2005.859594
|
|
Tsumura A, Koezuka H, Ando T. Macromolecular electronicdevices: field-effect transistor with a polythiophene thin film. Applied Physics Letters, 1986, 49(18): 1210–1212
doi: 10.1063/1.97417
|
|
Klauk H, Halik M, Zschieschang U, Eder F, Rohde D, Schmid G, Dehm C. Flexible organic complementary circuits. IEEE Transactions on Electron Devices, 2005, 52(4): 618–622
doi: 10.1109/TED.2005.844739
|
|
Na J H, Kitamura M, Lee D, Arakawa Y. High performance flexible pentacene thin-film transistorsfabricated on titanium silicon oxide gate dielectrics. Applied Physics Letters, 2007, 90(16): 163514
doi: 10.1063/1.2730586
|
|
Fortunato E M C, Barquinha P M C, Pimentel A C M BG, Gon?alves A M F, Marques A J S, Pereira L M N, Martins R F P. Fully transparent ZnO thin-filmtransistor produced at room temperature. Advanced Materials, 2005, 17(5): 590–594
doi: 10.1002/adma.200400368
|
|
Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. Thin-film transistor fabricated in single-crystallinetransparent oxide semiconductor. Science, 2003, 300(5623): 1269–1272
doi: 10.1126/science.1083212
|
|
Hosono H. Transparent amorphous oxide semiconductors for high performanceTFT. SID Symposium Digest of TechnicalPapers, 2007, 38(1): 1830–1833
|
|
Presley R E, Munsee C L, Park C, Hong D, Wager J F, Keszler D A. Tin oxide transparent thin-film transistors. Journal of Physics D, 2004, 37(20): 2810–2813
doi: 10.1088/0022-3727/37/20/006
|
|
G?rrn P, Holzer P, Riedl T, Kowalsky W, Wang J, Weimann T, Hinze P, Kipp S. Stability of transparentzinc tin oxide transistors under bias stress. Applied Physics Letters, 2007, 90(6): 063502
|
|
Narushima S, Orita M, Hirano M, Hosono H. Electronic structure and transport properties in the transparent amorphous oxidesemiconductor 2CdO·GeO2. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(3): 035203
doi: 10.1103/PhysRevB.66.035203
|
|
Grover M S, Hersh P A, Chiang H Q, Kettenring E S, Wager J F, Keszler D A. Thin-film transistors with transparent amorphous zincindium tin oxide channel layer. Journal of Physics D, 2007, 40(5): 1335–1338
doi: 10.1088/0022-3727/40/5/004
|
|
Kumomi H, Nomura K, Kamiya T, Hosono H. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516–1522
|
|
Shen G Z, Chen P C, Ryu K, Zhou C. Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 2009, 19(7): 828–839
doi: 10.1039/b816543b
|
|
Curreli M, Li C, Sun Y, Lei B, Gundersen M A, Thompson M E, Zhou C. Selective functionalizationof In2O3 nanowire matdevices for biosensing applications. Journal of the American Chemical Society, 2005, 127(19): 6922–6923
doi: 10.1021/ja0503478
|
|
Tian B, Zheng X, Kempa T J, Fang Y, Yu N, Yu G, Huang J, Lieber C M. Coaxial silicon nanowires as solar cellsand nanoelectronic power sources. Nature, 2007, 449(7164): 885–889
doi: 10.1038/nature06181
|
|
Qian F, Li Y, Gradecak S, Park H G, Dong Y, Ding Y, Wang Z L, Lieber C M. Multi-quantum-well nanowire heterostructuresfor wavelength-controlled lasers. Nature Materials, 2008, 7(9): 701–706
doi: 10.1038/nmat2253
|
|
Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459
doi: 10.1038/nmat1387
|
|
Wang Z L. Nanowires and Nanobelts: Materials, Properties and Devices. Boston: Kluwer Academic Publishers, 2003
doi: 10.1007/978-0-387-28747-8
|
|
Li Y, Qian F, Xiang J, Lieber C M. Nanowire electronic and optoelectronic devices. Materials Today, 2006, 9(10): 18–27
doi: 10.1016/S1369-7021(06)71650-9
|
|
Meindl J D, Chen Q, Davis J A. Limits on silicon nanoelectronics forterascale integration. Science, 2001, 293(5537): 2044–2049
doi: 10.1126/science.293.5537.2044
|
|
Shen G Z, Chen D, Chen P C, Zhou C. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano, 2009, 3(5): 1115–1120
doi: 10.1021/nn900133f
|
|
Chen P C, Shen G Z, Zhou C. Chemical sensors and electronic nosesbased on 1-D metal oxide nanostructures. IEEE Transactions on Nanotechnology, 2008, 7(6): 668–682
doi: 10.1109/TNANO.2008.2006273
|
|
Zhang J, Chen P C, Shen G Z, He J B, Kumbhar A, Zhou C, Fang J. P-type field-effect transistors of single-crystal zinc telluride nanobelts. Angewandte Chemie International Edition, 2008, 47(49): 9469–9471
doi: 10.1002/anie.200804073
|
|
Shen G Z, Chen D. Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops. Journal of the American Chemical Society, 2006, 128(36): 11762–11763
doi: 10.1021/ja064123g
|
|
Cui Y, Wei Q, Park H, Lieber C M. Nanowire nanosensors for highly sensitive and selective detectionof biological and chemical species. Science, 2001, 293(5533): 1289–1292
doi: 10.1126/science.1062711
|
|
Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M. Logic gates and computation from assembled nanowire buildingblocks. Science, 2001, 294(5545): 1313–1317
doi: 10.1126/science.1066192
|
|
Shen G Z, Bando Y, Hu J Q, Golberg D. High-symmetry ZnS hepta-and tetrapods composed of assembled ZnS nanowire arrays. Applied Physics Letters, 2007, 90(12): 123101
doi: 10.1063/1.2716242
|
|
Law M, Kind H, Messer B, Kim F, Yang P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie International Edition, 2002, 41(13): 2405–2408
doi: 10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
|
|
Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional nanostructures. Annual Review of Materials Research, 2004, 34: 151–180
doi: 10.1146/annurev.matsci.34.040203.112141
|
|
Shen G Z, Bando Y, Ye C H, Yuan X L, Sekiguchi T, Golberg D. Single-crystal nanotubes of II3-V2 semiconductors. Angewandte Chemie International Edition, 2006, 45(45): 7568–7572
doi: 10.1002/anie.200602636
|
|
Duan X, Huang Y, Agarwal R, Lieber C M. Single-nanowire electrically driven lasers. Nature, 2003, 421(6920): 241–245
doi: 10.1038/nature01353
|
|
Zhong Z, Qian F, Wang D, Lieber C M. Synthesis of p-type gallium nitride nanowires for electronic andphotonic nanodevices. Nano Letters, 2003, 3(3): 343–346
doi: 10.1021/nl034003w
|
|
Zhong Z, Wang D, Cui Y, Bockrath M W, Lieber C M. Nanowire crossbar arraysas address decoders for integrated nanosystems. Science, 2003, 302(5649): 1377–1379
doi: 10.1126/science.1090899
|
|
Cao Q, Hur S H, Zhu Z T, Sun Y, Wang C J, Meitl M A, Shim M, Rogers J A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductorswith elastomeric dielectrics. Advanced Materials, 2006, 18(3): 304–309
doi: 10.1002/adma.200501740
|
|
Ishikawa F N, Chang H K, Ryu K, Chen P C, Badmaev A, Gomez De Arco L, Shen G Z, Zhou C W. Transparent electronics based on transferprinted aligned carbon nanotubes on rigid and flexible substrates. ACS Nano, 2009, 3(1): 73–79
doi: 10.1021/nn800434d
|
|
Eda G, Fanchini G, Chhowalla M. Large-area ultrathin filmsof reduced graphene oxide as a transparent and flexible electronicmaterial. Nature Nanotechnology, 2008, 3(5): 270–274
doi: 10.1038/nnano.2008.83
|
|
Artukovic E, Kaempgen M, Hecht D S, Roth S, Grüner G. Transparent and flexible carbon nanotube transistors. Nano Letters, 2005, 5(4): 757–760
doi: 10.1021/nl050254o
|
|
Tseng S H, Tai N H. Fabrication of a transparent and flexible thin film transistor based on single-walledcarbon nanotubes using the direct transfer method. Applied Physics Letters, 2009, 95(20): 204104
doi: 10.1063/1.3264970
|
|
Bae E J, Min Y S, Kim U J, Park W J. Thin film transistors of single-walled carbon nanotubes grown directlyon glass substrates. Nanotechnology, 2007, 18(49): 495203
doi: 10.1088/0957-4484/18/49/495203
|
|
Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbonsof tin oxide. Solid State Communications, 2001, 118(7): 351–354
doi: 10.1016/S0038-1098(01)00122-3
|
|
Shen G Z, Bando Y, Lee C J. Growth of self-organized hierarchicalZnO nanoarchitectures by a simple thermal evaporation process. Journal of Physical Chemistry B, 2005, 109(21): 10779–10785
doi: 10.1021/jp050950c
|
|
Shen G Z, Bando Y, Lee C J. Synthesis and evolution of novel hollowZnO urchins by a simple thermal evaporation process. Journal of Physical Chemistry B, 2005, 109(21): 10578–10583
doi: 10.1021/jp051078a
|
|
Shen G Z, Cho J H, Lee C J. Morphology-controlled synthesis, growthmechanism and optical properties of ZnO nanonails. Chemical Physics Letters, 2005, 401(4―6): 414–419
doi: 10.1016/j.cplett.2004.11.096
|
|
Shen G Z, Bando Y, Chen D, Liu B, Zhi C, Golberg D. Morphology-controlled synthesis of ZnO nanostructuresby a simple round-to-round metal vapor deposition route. Journal of Physical Chemistry B, 2006, 110(9): 3973–3978
doi: 10.1021/jp056783y
|
|
Shen G Z, Bando Y, Liu B, Golberg D, Lee C J. Characterization and field-emissionproperties of vertically-aligned ZnO nanonails and nanopencils fabricatedby a modified thermal evaporation process. Advanced Functional Materials, 2006, 16(3): 410–416
doi: 10.1002/adfm.200500571
|
|
Liu Z, Zhang D, Han S, Li C, Tang T, Jin W, Liu X, Lei B, Zhou C. Laser ablation synthesis and electronic transport studies of tin oxide nanowires. Advanced Materials, 2003, 15(20): 1754–1757
doi: 10.1002/adma.200305439
|
|
Li C, Zhang D, Han S, Liu X, Tang T, Zhou C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronicproperties. Advanced Materials, 2003, 15(2): 143–146
doi: 10.1002/adma.200390029
|
|
Dattoli E N, Wan Q, Guo W, Chen Y, Pan X, Lu W. Fully transparent thin-film transistor devices basedon SnO2 nanowires. Nano Letters, 2007, 7(8): 2463–2469
doi: 10.1021/nl0712217
|
|
Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C W, Marks T J, Janes D B. Fabrication of fully transparent nanowiretransistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2(6): 378–384
doi: 10.1038/nnano.2007.151
|
|
Ju S, Li J, Liu J, Chen P C, Ha Y G, Ishikawa F N, Chang H K, Zhou C, Facchetti A, Janes D B, Marks T J. Transparent active matrix organic light-emitting diodedisplays driven by nanowire transistor circuitry. Nano Letters, 2008, 8(4): 997–1004
doi: 10.1021/nl072538+
|
|
Dattoli E N, Kim K H, Fung W Y, Choi S Y, Lu W. Radio-frequency operation of transparent nanowire thin-film transistors. IEEE Electron Device Letters, 2009, 30(7): 730–732
doi: 10.1109/LED.2009.2021167
|
|
Zhang W F, He Z B, Yuan G D, Jie J S, Luo L B, Zhang X J, Chen Z H, Lee C S, Zhang W J, Lee S T. High-performance, fully transparent,and flexible zinc-doped indium oxide nanowire transistors. Applied Physics Letters, 2009, 94(12): 123103
doi: 10.1063/1.3100194
|
|
Chen P C, Shen G Z, Chen H, Ha Y G, Wu C, Sukcharoenchoke S, Fu Y, Liu J, Facchetti A, Marks T J, Thompson M E, Zhou C. High-performance single-crystalline arsenic-doped indiumoxide nanowires for transparent thin-film transistors and active matrixorganic light-emitting diode displays. ACS Nano, 2009, 3(11): 3383–3390
doi: 10.1021/nn900704c
|
|
Chen P C, Shen G Z, Sukcharoenchoke S, Zhou C. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneousfilms. Applied Physics Letters, 2009, 94(4): 043113
doi: 10.1063/1.3069277
|
|
O’Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb S B, Torres C M. Bottom-up growth of fullytransparent contact layers of indium tin oxide nanowires for light-emittingdevices. Nature Nanotechnology, 2009, 4(4): 239–244
doi: 10.1038/nnano.2008.418
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|