Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 217-227    https://doi.org/10.1007/s12200-010-0110-0
Research articles
Fully transparent flexible transistors built on metal oxide nanowires
Di CHEN1,Guozhen SHEN1,Jing XU2,
1.Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2.Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
 Download: PDF(955 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transparent electronics has attracted great research efforts in recent years due to its potential to make significant impact in many area, such as next generation displays, ultraviolet (UV) detectors, solar cells, charge-coupled devices (CCDs), and so on. Central to the realization of transparent electronics is the development of high performance fully transparent thin-film transistors (TFTs). One-dimensional (1-D) nanostructures have been the focus of current researches due to their unique physical properties and potential applications in nanoscale elec-tronics and optoelectronics. Among 1-D nanostructures, transparent metal oxide nanowires are one of the best candidates to make fully transparent TFTs. We provide in this paper the most recent development on the fabrication of fully transparent TFT using metal oxide nanowires as the device elements. First, the review article gives a general introduction about the development of transparent elec-tronics using different kinds of materials as the devices elements, including organic semiconductors, metal oxide thin films, and metal oxide nanowires. Second, the growth of metal oxide nanowires using vapor phase methods governed by two different growth mechanisms: vapor-solid mechanism and vapor-liquid-solid mechanism, respectively, are described. Third, the fabrication of transparent and flexible TFTs using different metal oxides nanowires is comprehensively described. In conclusion, the challenges and prospects for the future are discussed.
Issue Date: 05 September 2010
 Cite this article:   
Di CHEN,Guozhen SHEN,Jing XU. Fully transparent flexible transistors built on metal oxide nanowires[J]. Front. Optoelectron., 2010, 3(3): 217-227.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0110-0
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/217
Wager J F. Transparent electronics. Science, 2003, 300(5623): 1245–1246

doi: 10.1126/science.1085276
Wagner J F, Keszler D A, Presley R E. Transparent Electronics. New York: Springer, 2008
Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conductionin transparent thin films of CuAlO2. Nature, 1997, 389(6654): 939–942

doi: 10.1038/40087
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexiblethin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488–492

doi: 10.1038/nature03090
Chiang H Q, Wager J F, Hoffman R L, Jeong J, Keszler D A. High mobility transparentthin-film transistors with amorphous zinc tin oxide channel layers. Applied Physics Letters, 2005, 86(1): 013503

doi: 10.1063/1.1843286
G?rrn P, Sander M, Meyer J, Kroger M, Becker E, Johannes H H, Kowalsky W, Riedl T. Towards see-throughdisplays: fully transparent thin-film transistors driving transparentorganic light-emitting diodes. Advanced Materials, 2006, 18(6): 738–741
Wang L, Yoon M H, Lu G, Yang Y, Facchetti A, Marks T J. High-performance transparent inorganic-organic hybrid thin-film n-typetransistors. Nature Materials, 2006, 5(11): 893–900

doi: 10.1038/nmat1755
Lin Y Y, Gundlach D J, Nelson S, Jackson T N. Stacked pentacene layer orgainc thin-film transistorswith improved characteristics. IEEE Electron Device Letters, 1997, 18(12): 606–608

doi: 10.1109/55.644085
Bao Z, Lovinger A J, Dodabalapur A. Organic field-effect transistorswith high mobility based on copper phthalocyanine. Applied Physics Letters, 1996, 69(20): 3066–3068

doi: 10.1063/1.116841
Katz H E. Organic molecular solids as thin film transistor semiconductors. Journal of Materials Chemistry, 1997, 7(3): 369–376

doi: 10.1039/a605274f
Horowitz G. Organic field-effect transistors. Advanced Materials, 1998, 10(5): 365–377

doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
Garnier F. Thin film transistors based on organic conjugated semiconductors. Chemical Physics, 1998, 227(1―2): 253–262
Choi Y W, Kim I D, Tuller H L, Akinwande A I. Low-voltage organic transistors and depletion-load inverters withhigh-K pyrochlore BZN gate dielectricon polymer substrate. IEEE Transactionson Electron Devices, 2005, 52(12): 2819–2824

doi: 10.1109/TED.2005.859594
Tsumura A, Koezuka H, Ando T. Macromolecular electronicdevices: field-effect transistor with a polythiophene thin film. Applied Physics Letters, 1986, 49(18): 1210–1212

doi: 10.1063/1.97417
Klauk H, Halik M, Zschieschang U, Eder F, Rohde D, Schmid G, Dehm C. Flexible organic complementary circuits. IEEE Transactions on Electron Devices, 2005, 52(4): 618–622

doi: 10.1109/TED.2005.844739
Na J H, Kitamura M, Lee D, Arakawa Y. High performance flexible pentacene thin-film transistorsfabricated on titanium silicon oxide gate dielectrics. Applied Physics Letters, 2007, 90(16): 163514

doi: 10.1063/1.2730586
Fortunato E M C, Barquinha P M C, Pimentel A C M BG, Gon?alves A M F, Marques A J S, Pereira L M N, Martins R F P. Fully transparent ZnO thin-filmtransistor produced at room temperature. Advanced Materials, 2005, 17(5): 590–594

doi: 10.1002/adma.200400368
Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. Thin-film transistor fabricated in single-crystallinetransparent oxide semiconductor. Science, 2003, 300(5623): 1269–1272

doi: 10.1126/science.1083212
Hosono H. Transparent amorphous oxide semiconductors for high performanceTFT. SID Symposium Digest of TechnicalPapers, 2007, 38(1): 1830–1833
Presley R E, Munsee C L, Park C, Hong D, Wager J F, Keszler D A. Tin oxide transparent thin-film transistors. Journal of Physics D, 2004, 37(20): 2810–2813

doi: 10.1088/0022-3727/37/20/006
G?rrn P, Holzer P, Riedl T, Kowalsky W, Wang J, Weimann T, Hinze P, Kipp S. Stability of transparentzinc tin oxide transistors under bias stress. Applied Physics Letters, 2007, 90(6): 063502
Narushima S, Orita M, Hirano M, Hosono H. Electronic structure and transport properties in the transparent amorphous oxidesemiconductor 2CdO·GeO2. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(3): 035203

doi: 10.1103/PhysRevB.66.035203
Grover M S, Hersh P A, Chiang H Q, Kettenring E S, Wager J F, Keszler D A. Thin-film transistors with transparent amorphous zincindium tin oxide channel layer. Journal of Physics D, 2007, 40(5): 1335–1338

doi: 10.1088/0022-3727/40/5/004
Kumomi H, Nomura K, Kamiya T, Hosono H. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516–1522
Shen G Z, Chen P C, Ryu K, Zhou C. Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 2009, 19(7): 828–839

doi: 10.1039/b816543b
Curreli M, Li C, Sun Y, Lei B, Gundersen M A, Thompson M E, Zhou C. Selective functionalizationof In2O3 nanowire matdevices for biosensing applications. Journal of the American Chemical Society, 2005, 127(19): 6922–6923

doi: 10.1021/ja0503478
Tian B, Zheng X, Kempa T J, Fang Y, Yu N, Yu G, Huang J, Lieber C M. Coaxial silicon nanowires as solar cellsand nanoelectronic power sources. Nature, 2007, 449(7164): 885–889

doi: 10.1038/nature06181
Qian F, Li Y, Gradecak S, Park H G, Dong Y, Ding Y, Wang Z L, Lieber C M. Multi-quantum-well nanowire heterostructuresfor wavelength-controlled lasers. Nature Materials, 2008, 7(9): 701–706

doi: 10.1038/nmat2253
Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459

doi: 10.1038/nmat1387
Wang Z L. Nanowires and Nanobelts: Materials, Properties and Devices. Boston: Kluwer Academic Publishers, 2003

doi: 10.1007/978-0-387-28747-8
Li Y, Qian F, Xiang J, Lieber C M. Nanowire electronic and optoelectronic devices. Materials Today, 2006, 9(10): 18–27

doi: 10.1016/S1369-7021(06)71650-9
Meindl J D, Chen Q, Davis J A. Limits on silicon nanoelectronics forterascale integration. Science, 2001, 293(5537): 2044–2049

doi: 10.1126/science.293.5537.2044
Shen G Z, Chen D, Chen P C, Zhou C. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano, 2009, 3(5): 1115–1120

doi: 10.1021/nn900133f
Chen P C, Shen G Z, Zhou C. Chemical sensors and electronic nosesbased on 1-D metal oxide nanostructures. IEEE Transactions on Nanotechnology, 2008, 7(6): 668–682

doi: 10.1109/TNANO.2008.2006273
Zhang J, Chen P C, Shen G Z, He J B, Kumbhar A, Zhou C, Fang J. P-type field-effect transistors of single-crystal zinc telluride nanobelts. Angewandte Chemie International Edition, 2008, 47(49): 9469–9471

doi: 10.1002/anie.200804073
Shen G Z, Chen D. Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops. Journal of the American Chemical Society, 2006, 128(36): 11762–11763

doi: 10.1021/ja064123g
Cui Y, Wei Q, Park H, Lieber C M. Nanowire nanosensors for highly sensitive and selective detectionof biological and chemical species. Science, 2001, 293(5533): 1289–1292

doi: 10.1126/science.1062711
Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M. Logic gates and computation from assembled nanowire buildingblocks. Science, 2001, 294(5545): 1313–1317

doi: 10.1126/science.1066192
Shen G Z, Bando Y, Hu J Q, Golberg D. High-symmetry ZnS hepta-and tetrapods composed of assembled ZnS nanowire arrays. Applied Physics Letters, 2007, 90(12): 123101

doi: 10.1063/1.2716242
Law M, Kind H, Messer B, Kim F, Yang P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie International Edition, 2002, 41(13): 2405–2408

doi: 10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional nanostructures. Annual Review of Materials Research, 2004, 34: 151–180

doi: 10.1146/annurev.matsci.34.040203.112141
Shen G Z, Bando Y, Ye C H, Yuan X L, Sekiguchi T, Golberg D. Single-crystal nanotubes of II3-V2 semiconductors. Angewandte Chemie International Edition, 2006, 45(45): 7568–7572

doi: 10.1002/anie.200602636
Duan X, Huang Y, Agarwal R, Lieber C M. Single-nanowire electrically driven lasers. Nature, 2003, 421(6920): 241–245

doi: 10.1038/nature01353
Zhong Z, Qian F, Wang D, Lieber C M. Synthesis of p-type gallium nitride nanowires for electronic andphotonic nanodevices. Nano Letters, 2003, 3(3): 343–346

doi: 10.1021/nl034003w
Zhong Z, Wang D, Cui Y, Bockrath M W, Lieber C M. Nanowire crossbar arraysas address decoders for integrated nanosystems. Science, 2003, 302(5649): 1377–1379

doi: 10.1126/science.1090899
Cao Q, Hur S H, Zhu Z T, Sun Y, Wang C J, Meitl M A, Shim M, Rogers J A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductorswith elastomeric dielectrics. Advanced Materials, 2006, 18(3): 304–309

doi: 10.1002/adma.200501740
Ishikawa F N, Chang H K, Ryu K, Chen P C, Badmaev A, Gomez De Arco L, Shen G Z, Zhou C W. Transparent electronics based on transferprinted aligned carbon nanotubes on rigid and flexible substrates. ACS Nano, 2009, 3(1): 73–79

doi: 10.1021/nn800434d
Eda G, Fanchini G, Chhowalla M. Large-area ultrathin filmsof reduced graphene oxide as a transparent and flexible electronicmaterial. Nature Nanotechnology, 2008, 3(5): 270–274

doi: 10.1038/nnano.2008.83
Artukovic E, Kaempgen M, Hecht D S, Roth S, Grüner G. Transparent and flexible carbon nanotube transistors. Nano Letters, 2005, 5(4): 757–760

doi: 10.1021/nl050254o
Tseng S H, Tai N H. Fabrication of a transparent and flexible thin film transistor based on single-walledcarbon nanotubes using the direct transfer method. Applied Physics Letters, 2009, 95(20): 204104

doi: 10.1063/1.3264970
Bae E J, Min Y S, Kim U J, Park W J. Thin film transistors of single-walled carbon nanotubes grown directlyon glass substrates. Nanotechnology, 2007, 18(49): 495203

doi: 10.1088/0957-4484/18/49/495203
Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbonsof tin oxide. Solid State Communications, 2001, 118(7): 351–354

doi: 10.1016/S0038-1098(01)00122-3
Shen G Z, Bando Y, Lee C J. Growth of self-organized hierarchicalZnO nanoarchitectures by a simple thermal evaporation process. Journal of Physical Chemistry B, 2005, 109(21): 10779–10785

doi: 10.1021/jp050950c
Shen G Z, Bando Y, Lee C J. Synthesis and evolution of novel hollowZnO urchins by a simple thermal evaporation process. Journal of Physical Chemistry B, 2005, 109(21): 10578–10583

doi: 10.1021/jp051078a
Shen G Z, Cho J H, Lee C J. Morphology-controlled synthesis, growthmechanism and optical properties of ZnO nanonails. Chemical Physics Letters, 2005, 401(4―6): 414–419

doi: 10.1016/j.cplett.2004.11.096
Shen G Z, Bando Y, Chen D, Liu B, Zhi C, Golberg D. Morphology-controlled synthesis of ZnO nanostructuresby a simple round-to-round metal vapor deposition route. Journal of Physical Chemistry B, 2006, 110(9): 3973–3978

doi: 10.1021/jp056783y
Shen G Z, Bando Y, Liu B, Golberg D, Lee C J. Characterization and field-emissionproperties of vertically-aligned ZnO nanonails and nanopencils fabricatedby a modified thermal evaporation process. Advanced Functional Materials, 2006, 16(3): 410–416

doi: 10.1002/adfm.200500571
Liu Z, Zhang D, Han S, Li C, Tang T, Jin W, Liu X, Lei B, Zhou C. Laser ablation synthesis and electronic transport studies of tin oxide nanowires. Advanced Materials, 2003, 15(20): 1754–1757

doi: 10.1002/adma.200305439
Li C, Zhang D, Han S, Liu X, Tang T, Zhou C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronicproperties. Advanced Materials, 2003, 15(2): 143–146

doi: 10.1002/adma.200390029
Dattoli E N, Wan Q, Guo W, Chen Y, Pan X, Lu W. Fully transparent thin-film transistor devices basedon SnO2 nanowires. Nano Letters, 2007, 7(8): 2463–2469

doi: 10.1021/nl0712217
Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C W, Marks T J, Janes D B. Fabrication of fully transparent nanowiretransistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2(6): 378–384

doi: 10.1038/nnano.2007.151
Ju S, Li J, Liu J, Chen P C, Ha Y G, Ishikawa F N, Chang H K, Zhou C, Facchetti A, Janes D B, Marks T J. Transparent active matrix organic light-emitting diodedisplays driven by nanowire transistor circuitry. Nano Letters, 2008, 8(4): 997–1004

doi: 10.1021/nl072538+
Dattoli E N, Kim K H, Fung W Y, Choi S Y, Lu W. Radio-frequency operation of transparent nanowire thin-film transistors. IEEE Electron Device Letters, 2009, 30(7): 730–732

doi: 10.1109/LED.2009.2021167
Zhang W F, He Z B, Yuan G D, Jie J S, Luo L B, Zhang X J, Chen Z H, Lee C S, Zhang W J, Lee S T. High-performance, fully transparent,and flexible zinc-doped indium oxide nanowire transistors. Applied Physics Letters, 2009, 94(12): 123103

doi: 10.1063/1.3100194
Chen P C, Shen G Z, Chen H, Ha Y G, Wu C, Sukcharoenchoke S, Fu Y, Liu J, Facchetti A, Marks T J, Thompson M E, Zhou C. High-performance single-crystalline arsenic-doped indiumoxide nanowires for transparent thin-film transistors and active matrixorganic light-emitting diode displays. ACS Nano, 2009, 3(11): 3383–3390

doi: 10.1021/nn900704c
Chen P C, Shen G Z, Sukcharoenchoke S, Zhou C. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneousfilms. Applied Physics Letters, 2009, 94(4): 043113

doi: 10.1063/1.3069277
O’Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb S B, Torres C M. Bottom-up growth of fullytransparent contact layers of indium tin oxide nanowires for light-emittingdevices. Nature Nanotechnology, 2009, 4(4): 239–244

doi: 10.1038/nnano.2008.418
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed