Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 292-302    https://doi.org/10.1007/s12200-010-0111-z
Research articles
Diffraction of Lorentz-Gauss beam in uniaxial crystals: orthogonal to optical axis
Jia LI,Yanru CHEN,Shixue XU,Yongqing WANG,Muchun ZHOU,Qi ZHAO,Yu XIN,Feinan CHEN,
Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
 Download: PDF(853 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the diffraction theory of beams in uniaxial crystals, diffraction properties of a Lorentz-Gauss beam in uniaxial crystals orthogonal to the optical axis are derived in analytical forms. Diffraction fields, intensity distributions and effects of beam parameters are investigated by numerical examples, respectively. Results show that, upon propagation, initial field components and intensity distributions of Lorentz-Gauss beams would deteriorate due to effects of anisotropic media. When the Lorentz-Gauss beam diffracts into the far field, its intensity distribution would convert into a four-petal profile. Beam parameters wx and wy are shown to have a strong influence on intensity distributions. By selecting different values of them, profiles of Lorentz-Gauss beams would be different upon propagation.
Issue Date: 05 September 2010
 Cite this article:   
Jia LI,Yanru CHEN,Shixue XU, et al. Diffraction of Lorentz-Gauss beam in uniaxial crystals: orthogonal to optical axis[J]. Front. Optoelectron., 2010, 3(3): 292-302.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0111-z
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/292
Casey H C, Panish M B. Heterostructure Lasers. New York: Academic Press, 1978
Dumke W P. The angular beam divergence in double-heterojunction lasers with very thin active regions. IEEE Journal of Quantum Electronics, 1975, QE-11(7): 400–402

doi: 10.1109/JQE.1975.1068627
Naqwi A, Durst F. Focusing of diode laser beams: a simple mathematical model. Applied Optics, 1990, 29(12): 1780–1785

doi: 10.1364/AO.29.001780
Joyce W B, DeLoach B C. Alignment of Gaussian beams. Applied Optics, 1984, 23(23): 4187–4196

doi: 10.1364/AO.23.004187
Gawhary O E, Severini S. Lorentz beams and symmetry properties in paraxial optics. Journal of Optics A: Pure and Applied Optics, 2006, 8(5): 409–414

doi: 10.1088/1464-4258/8/5/007
Gawhary O E, Severini S. Lorentz beam as a basis for a new class of rectangular symmetric optical fields. Optics Communications, 2007, 269(2): 274–284

doi: 10.1016/j.optcom.2006.08.007
Yang J, Chen T, Ding G, Yuan X. Focusing of diode laser beams: a partially coherent Lorentz model. Proceedings of SPIE, 2007, 6824: 68240A

doi: 10.1117/12.757962
Zhou G. Nonparaxial propagation of a Lorentz-Gauss beam. Journal of the Optical Society of America B, 2009, 26(1): 141–147

doi: 10.1364/JOSAB.26.000141
Zhou G. Analytical vectorial structure of a Lorentz-Gauss beamin the far field. Applied Physics B: Lasersand Optics, 2008, 93(4): 891–899

doi: 10.1007/s00340-008-3254-5
Zhou G. Focal shift of focused truncated Lorentz-Gauss beam. Journal of the Optical Society of America A, 2008, 25(10): 2594–2599

doi: 10.1364/JOSAA.25.002594
Zhou G. Fractional Fourier transform of Lorentz-Gauss beams. Journal of the Optical Society of America A, 2009, 26(2): 350–355

doi: 10.1364/JOSAA.26.000350
Zhou G, Chu X. Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere. Optics Express, 2010, 18(2): 726–731

doi: 10.1364/OE.18.000726
Zhou G. Propagation of a partially coherent Lorentz-Gauss beamthrough a paraxial ABCD optical system. Optics Express, 2010, 18(5): 4637–4643

doi: 10.1364/OE.18.004637
Born M, Wolf E. Principles of Optics. Oxford: Pergamon Press, 1999
Ciattoni A, Palma C. Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theoryand beyond. Journal of the Optical Societyof America A, 2003, 20(11): 2163–2171

doi: 10.1364/JOSAA.20.002163
Ciattoni A, Palma C. Nondiffracting beams in uniaxial media propagating orthogonally to the optical axis. Optics Communications, 2003, 224(4–6): 175–183

doi: 10.1016/S0030-4018(03)01759-0
Ciattoni A, Palma C. Anisotropic beam spreading in uniaxial crystals. Optics Communications, 2004, 231(1–6): 79–92
Liu D, Zhou Z. Various dark hollow beams propagating in uniaxial crystals orthogonal to the opticalaxis. Journal of Optics A: Pure and AppliedOptics, 2008, 10(9): 095005

doi: 10.1088/1464-4258/10/9/095005
Liu D, Zhou Z. Propagation of partially polarized, partially coherent beams in uniaxial crystalsorthogonal to the optical axis. European Physical Journal D, 2009, 54(1): 95–101

doi: 10.1140/epjd/e2009-00166-9
Liu D, Zhou Z. Propagation of partially coherent flat-topped beams in uniaxial crystals orthogonalto the optical axis. Journal of the Optical Society of America A, 2009, 26(4): 924–930

doi: 10.1364/JOSAA.26.000924
Tang B. Hermite-cosine-Gaussian beams propagating in uniaxialcrystals orthogonal to the optical axis. Journal of the Optical Society of America A, 2009, 26(12): 2480–2487

doi: 10.1364/JOSAA.26.002480
Ciattoni A, Cincotti G, Palma C. Ordinary and extraordinarybeams characterization in uniaxially anisotropic crystals. Optics Communications, 2001, 195(1–4): 55–61

doi: 10.1016/S0030-4018(01)01335-9
Ciattoni A, Crosignani B, Di Porto P. Vectorial theory of propagationin uniaxially anisotropic media. Journal of the Optical Society of America A, 2001, 18(7): 1656–1661

doi: 10.1364/JOSAA.18.001656
Ciattoni A, Cincotti G, Provenziani D, Palma C. Paraxial propagation along the optical axis of a uniaxialmedium. Physical Review E, 2002, 66(3): 036614

doi: 10.1103/PhysRevE.66.036614
Ciattoni A, Cincotti G, Palma C. Propagation of cylindricallysymmetric fields in uniaxial crystals. Journal of the Optical Society of America A, 2002, 19(4): 792–796

doi: 10.1364/JOSAA.19.000792
Cincotti G, Ciattoni A, Palma C. Laguerre-Gauss and Bessel-Gaussbeams in uniaxial crystals. Journal of the Optical Society of America A, 2002, 19(8): 1680–1688

doi: 10.1364/JOSAA.19.001680
Tang B, Jin Y, Jiang M, Jiang X. Diffraction properties of four-petal Gaussian beams in uniaxially anisotropiccrystal. Chinese Optics Letters, 2008, 6(10): 779–781

doi: 10.3788/COL20080610.0779
Schmidt P P. A method for the convolution of lineshapes which involvethe Lorentz distribution. Journal of Physics B, 1976, 9(13): 2331–2339

doi: 10.1088/0022-3700/9/13/018
Abramowitz M, Stegun I A. Handbook of Mathematical Functions. New York: Dover Publication, 1972
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed