Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 376-381    https://doi.org/10.1007/s12200-010-0112-y
RESEARCH ARTICLE
Design of electronic sections for nano-displacement measuring system
Saeed OLYAEE(), Samaneh HAMEDI, Zahra DASHTBAN
Nano-Photonics and Optoelectronics Research Laboratory, Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University (SRTTU), Lavizan 16788, Tehran, Iran
 Download: PDF(368 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Noncontact displacement measurement is generally based on the interferometry method. In the semiconductor industry, a technique for measuring small features is required as circuit integration becomes denser and the wafer size becomes larger. An interferometric system known as a three-longitudinal-mode heterodyne interferometer (TLMI) is made of two main parts: optical setup and electronic sections. In the optical part, the base and measurement signals having 500-MHz frequency are produced, resulting from interfering three longitudinal modes. The secondary beat frequency to measure the displacement in the TLMI is about 300 kHz. To extract the secondary beat frequency, wide-band amplifiers, double-balanced mixers (DBMs), band-pass filters (BPFs), and low-pass filters (LPFs) are used. In this paper, we design the integrated circuit of a super-heterodyne interferometer with total gain of 56.9 dB in size of 1030 μm×1030 μm.

Keywords nano-displacement      double-balanced mixer (DBM)      integrated circuit      three-longitudinal-mode interferometer     
Corresponding Author(s): OLYAEE Saeed,Email:s_olyaee@srttu.edu   
Issue Date: 05 December 2010
 Cite this article:   
Saeed OLYAEE,Samaneh HAMEDI,Zahra DASHTBAN. Design of electronic sections for nano-displacement measuring system[J]. Front Optoelec Chin, 2010, 3(4): 376-381.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0112-y
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/376
Fig.1  Block diagram of a measurement system based on heterodyne laser interferometer (CCP: corner cube prism; BS: beam splitter; PBS: polarising beam splitter; LP: linear polarizer; APD: avalanche photodiode)
Fig.2  Block diagram of electronic section of displacement measurement system (BPF: band-pass filter; LPF: low-pass filter; DBM: double-balanced mixer; AMP: amplifier)
Fig.3  Schematic of three-stage cascode amplifier
Fig.4  Schematic of DBM
Fig.5  Schematic of phase detector stage
Fig.6  Gain profile of designed three-stage cascode amplifier
Fig.7  Output voltage of designed integrated circuit
Fig.8  Layout of integrated electronic section of displacement measurement system
Fig.9  Total chip size including pads of electronic section of displacement measurement system (3.44 mm × 3.44 mm)
1 Schattenburg M L, Smith H I. The critical role of metrology in nanotechnology. Proceedings of SPIE , 2001, 4608: 116-124
doi: 10.1117/12.437273
2 Misumi I, Gonda S, Kurosawa T, Takamasu K. Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope. Measurement Science and Technology , 2003, 14(4): 463-471
doi: 10.1088/0957-0233/14/4/309
3 Takada K, Amada M, Satoh S. Wavelength-adjustment-free optical low coherence interferometry for high-resolution and highly accurate optical network analysis of arrayed-waveguide gratings. Optics Communications , 2005, 252(1-3): 73-77
doi: 10.1016/j.optcom.2005.04.012
4 Olyaee S, Nejad S M. Nonlinearity and frequency-path modelling of three-longitudinal-mode nanometric displacement measurement system. IET Optoelectronics , 2007, 1(5): 211-220
doi: 10.1049/iet-opt:20060107
5 Olyaee S, Nejad S M. Design and simulation of velocity and displacement measurement system with sub nanometer uncertainty based on a new stabilized laser Doppler-interferometer. Arabian Journal for Science and Engineering , 2007, 32(2C): 90-99
6 Nejad S M, Olyaee S. Accuracy improvement by nonlinearity reduction in two-frequency laser heterodyne interferometer. In: Proceedings of the 13th IEEE International Conference on Electronics, Circuits and Systems . 2006, 914-917
7 Eom T B, Kim J A, Kang C S, Park B C, Kim J W. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer. Measurement Science and Technology , 2008, 19(7): 075302
doi: 10.1088/0957-0233/19/7/075302
8 Yokoyama T, Araki T, Yokoyama S, Suzuki N. A subnanometre heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He-Ne laser. Measurement Science and Technology , 2001, 12(2): 157-162
doi: 10.1088/0957-0233/12/2/305
9 Yokoyama S, Yokoyama T, Araki T. High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer. Measurement Science and Technology , 2005, 16(9): 1841-1847
doi: 10.1088/0957-0233/16/9/017
10 Olyaee S, Yoon T H, Hamedi S. Jones matrix analysis of frequency mixing error in three-longitudinal-mode laser heterodyne interferometer. IET Optoelectronics , 2009, 3(5): 215-224
doi: 10.1049/iet-opt.2009.0015
11 Gray P R, Meyer R G. Analysis and Design of Analog Integrated Circuits. New York: John Wiley, 1993
12 Kim S S, Lee Y S, Yun T Y. High-gain wideband CMOS low noise amplifier with two-stage cascode and simplified Chebyshev filter. ETRI Journal , 2007, 29(5): 670-672
doi: 10.4218/etrij.07.0207.0025
13 Allstot D J, Choi K, Park J. Parasitic-Aware Optimization of CMOS RF Circuits. New York: Springer, 2003
[1] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[2] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[3] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[4] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[5] Xiaoliu ZUO, Zhijun SUN. Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration[J]. Front Optoelec, 2013, 6(3): 261-269.
[6] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
[7] Xianjie LI, Yonglin ZHAO, Daomin CAI, Qingming ZENG, Yunzhang PU, Yana GUO, Zhigong WANG, Rong WANG, Ming QI, Xiaojie CHEN, Anhuai XU. Monolithically integrated long wavelength photoreceiver OEIC based on InP/InGaAs HBT technology[J]. Front Optoelec Chin, 2008, 1(3-4): 336-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed