Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (3) : 228-231    https://doi.org/10.1007/s12200-010-0113-x
Research articles
Bis-(8-hydroxyquinoline) mercury nanoribbons: preparation, characterization and photoconductivity
Li LIU1,Mingwang SHAO2,Xiuhua WANG3,
1.Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China;College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China; 2.Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China;Functional Nano and Soft Materials Laboratory, Soochow University, Suzhou 215123, China; 3.Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China;
 Download: PDF(212 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bis-(8-hydroxyquinoline) mercury nanoribbons with average width of 300 nm, thickness of 50 nm and length of up to tens of micrometers were synthesized by a facile solvothermal method. X-ray powder diffraction and Fourier transform infrared spectrum were employed to determine their structure. The conductivity of a bundle of nanoribbons was also measured, which exhibited linear current-voltage characteristics and excellent photoresponse to light, indicating their potential applications in photoswitch nano-devices in the future.
Issue Date: 05 September 2010
 Cite this article:   
Li LIU,Mingwang SHAO,Xiuhua WANG. Bis-(8-hydroxyquinoline) mercury nanoribbons: preparation, characterization and photoconductivity[J]. Front. Optoelectron., 2010, 3(3): 228-231.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0113-x
https://academic.hep.com.cn/foe/EN/Y2010/V3/I3/228
Chiu J J, Wang W S, Kei C C, Perng T P. Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared by vaporcondensation. Applied Physics Letters, 2003, 83(2): 347–349

doi: 10.1063/1.1591249
Hu J S, Ji H X, Cao A M, Huang Z X, Zhang Y, Wan L J, Xia A D, Yu D P, Meng X M, Lee S T. Facile solution synthesisof hexagonal Alq3 nanorods and their field emission properties. Chemical Communications (Cambridge), 2007, (29): 3083–3085

doi: 10.1039/b704106c
Chiu J J, Kei C C, Perng T P, Wang W S. Organic semiconductor nanowires for field emission. Advanced Materials, 2003, 15(16): 1361–1364

doi: 10.1002/adma.200304918
Liu H B, Zhao Q, Li Y L, Liu Y, Lu F S, Zhuang J P, Wang S, Jiang L, Zhu D B, Yu D P, Chi L F. Field emission properties of large-area nanowires oforganic charge-transfer complexes. Journal of the American Chemical Society, 2005, 127(4): 1120–1121

doi: 10.1021/ja0438359
Kastler M, Pisula W, Laquai F, Kumar A, Davies R J, Baluschev S, Garcia-Gutierrez M C, Wasserfallen D, Butt H J, Riekel C, Wegner G, Mullen K. Organization of charge-carrierpathways for organic electronics. Advanced Materials, 2006, 18(17): 2255–2259

doi: 10.1002/adma.200601177
Cho C P, Yu C Y, Perng T P. Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles. Nanotechnology, 2006, 17(21): 5506–5510

doi: 10.1088/0957-4484/17/21/035
Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan Y Q. One-dimensional nanostructures: synthesis, characterization, andapplications. Advanced Materials, 2003, 15(5): 353–389

doi: 10.1002/adma.200390087
Zhang X J, Jie J S, Zhang W F, Zhang C Y, Luo L B, He Z B, Zhang X H, Zhang W J, Lee C S, Lee S T. Photoconductivity of a singlesmall-molecule organic nanowire. Advanced Materials, 2008, 20(12): 2427–2432

doi: 10.1002/adma.200800351
Hu J S, Guo Y G, Liang H P, Wan L J, Jiang L. Three-dimensional self-organizationof supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. Journal of the American Chemical Society, 2005, 127(48): 17090–17095

doi: 10.1021/ja0553912
Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Low-dimensional nanomaterials based on small organicmolecules: preparation and optoelectronic properties. Advanced Materials, 2008, 20(15): 2859–2876

doi: 10.1002/adma.200800604
Zhang X J, Zhang X H, Zou K, Lee C S, Lee S T. Single-crystal nanoribbons,nanotubes, and nanowires from intramolecular charge-transfer organicmolecules. Journal of the American ChemicalSociety, 2007, 129(12): 3527–3532

doi: 10.1021/ja0642109
An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly fluorescent organogel system comprising fibrillarself-assembly of a trifluoromethyl-based cyanostilbene derivative. Journal of the American Chemical Society, 2004, 126(33): 10232–10233

doi: 10.1021/ja046215g
Zhao L Y, Yang W S, Luo Y, Zhai T Y, Zhang G J, Yao J N. Nanotubes from isomeric dibenzoylmethane molecules. Chemistry—A European Journal, 2005, 11(12): 3773–3778

doi: 10.1002/chem.200401265
Zhao Y S, Xiao D B, Yang W S, Peng A D, Yao J N. 2,4,5-triphenylimidazolenanowires with fluorescence narrowing spectra prepared through theadsorbent-assisted physical vapor deposition method. Chemistry of Materials, 2006, 18(9): 2302–2306

doi: 10.1021/cm060102+
Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915

doi: 10.1063/1.98799
Mitchell K, Ibers J A. Rare-earth transition-metal chalcogenides. Chemical Reviews, 2002, 102(6): 1929–1952

doi: 10.1021/cr010319h
Xu C Q, Zhang Z C, Ye Q. A novel facile method to metal sulfide (metal=Cd, Ag,Hg) nano-crystallite. Materials Letters, 2004, 58(11): 1671–1676

doi: 10.1016/j.matlet.2003.11.005
Wang X H, Shao M W, Shao G, Wang S W. Tris(8-hydroxyquinoline)aluminum nanoribbons: facile solvothermalpreparation and photoconductivity studies. Journal of Nanoscience and Nanotechnology, 2009, 9(8): 4709–4714

doi: 10.1166/jnn.2009.1105
Chen W, Peng Q, Li Y D. Luminescent bis-(8-hydroxyquinoline)cadmium complex nanorods. Crystal Growth & Design, 2008, 8(2): 564–567

doi: 10.1021/cg0706316
Pan H C, Liang F P, Mao C J, Zhu J J, Chen H Y. Highly luminescent zinc(II)-bis(8-hydroxyquinoline)complex nanorods: sonochemical synthesis, characterizations, and proteinsensing. Journal of Physical ChemistryB, 2007, 111(20): 5767–5772

doi: 10.1021/jp0703049
Hesse R. Indexing powder photographs of tetragonal, hexagonaland orthorhombic crystals. Acta Crystallographica, 1948, 1(4): 200–207

doi: 10.1107/S0365110X48000557
Lipson H. Indexing powder photographs of orthorhombic crystals. Acta Crystallographica, 1949, 2(1): 43–45

doi: 10.1107/S0365110X49000102
Tackett J E, Sawyer D T. Properties and infrared spectra in the potassium bromide region of8-quinolinol and its metal chelates. Inorganic Chemistry, 1964, 3(5): 692–696

doi: 10.1021/ic50015a021
Tang Q X, Li H X, Liu Y L, Hu W P. High-performance air-stable n-type transistors with an asymmetricaldevice configuration based on organic single-crystalline submicrometer/nanometerribbons. Journal of the American ChemicalSociety, 2006, 128(45): 14634–14639

doi: 10.1021/ja064476f
Li Q H, Wan Q, Liang Y X, Wang T H. Electronic transport through individual ZnO nanowires. Applied Physics Letters, 2004, 84(22): 4556–4558

doi: 10.1063/1.1759071
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed