Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 339-342    https://doi.org/10.1007/s12200-010-0114-9
RESEARCH ARTICLE
WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA
Jing HUANG(), Deming LIU
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(252 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A signal remodulation scheme of 10-Gb/s differential phase-shift keying (DPSK) downstream and 10-Gb/s on-off keying (OOK) upstream using a semiconductor optical amplifier (SOA) and a Mach-Zehnder intensity modulator (MZ-IM) at the optical networking unit (ONU) side for wavelength division multiplexed passive optical network (WDM PON) is proposed. Simulation results indicate that error-free operation can be achieved in a 20-km transmission, and the receiver sensitivity of return-to-zero differential phase-shift keying (RZ-DPSK) is higher than nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) in the proposed scheme.

Keywords wavelength division multiplexed passive optical network (WDM PON)      differential phase-shift keying (DPSK)      semiconductor optical amplifier (SOA)     
Corresponding Author(s): HUANG Jing,Email:langhai@gmail.com   
Issue Date: 05 December 2010
 Cite this article:   
Jing HUANG,Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0114-9
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/339
Fig.1  Proposed WDM PON system
Fig.2  Simulation model setup of proposed WDM PON link
Fig.3  Eye diagram of downstream NRZ-DPSK and upstream OOK. (a) NRZ-DPSK at back-to-back; (b) NRZ-DPSK after 20-km transmission; (c) re-modulated OOK at back-to-back; (d) re-modulated OOK after 20-km transmission
Fig.4  Eye diagram of downstream RZ-DPSK and upstream OOK. (a) RZ-DPSK at back-to-back; (b) RZ-DPSK after 20-km transmission; (c) re-modulated OOK at back-to-back; (d) re-modulated OOK after 20-km transmission
Fig.5  BER measurements of downstream NRZ-DPSK and upstream OOK
Fig.6  BER measurements of downstream RZ-DPSK and upstream OOK
1 Jung D K, Kim H, Han K H, Chung Y C. Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals. Electronics Letters , 2001, 37(5): 308–309
doi: 10.1049/el:20010214
2 Hung W, Chan C K, Chen L K, Tong F. An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser. IEEE Photonics Technology Letters , 2003, 15(10): 1476–1478
doi: 10.1109/LPT.2003.818055
3 Takesue H, Sugie T. Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources. Journal of Lightwave Technology , 2003, 21(11): 2546–2556
doi: 10.1109/JLT.2003.819532
4 Healey P, Townsend P, Ford C, Johnston L, Townley P, Lealman I, Rivers L, Perrin S, Moore R. Spectral slicing WDM-PON using wavelength-seeded reflective SOAs. Electronics Letters , 2001, 37(19): 1181–1182
doi: 10.1049/el:20010786
5 Chanclou P, Payoux F, Soret T, Genay N, Brenot R, Blache F, Goix M, Landreau J, Legouezigou O, Mallecot F. Demonstration of RSOA-based remote modulation at 2.5 and 5 Gbit/s for WDM PON. In: Proceedings of Optical Fiber Communication Conference . 2007, OWD1
6 Cho K Y, Takushima Y, Chung Y C. 10-Gb/s operation of RSOA for WDM PON. IEEE Photonics Technology Letters , 2008, 20(18): 1533–1535
doi: 10.1109/LPT.2008.928834
7 Settembre M, Matera F, Hagele V, Gabitov N, Mattheus A W, Turitsyn S K. Cascaded optical communication systems with in-line semiconductor optical amplifiers. Journal of Lightwave Technology , 1997, 15(6): 962–967
doi: 10.1109/50.588666
8 Li Z, Dong Y, Mo J, Wang Y, Lu C. 1050-km WDM transmission of 8×10.709 Gb/s DPSK signal using cascaded in-line semiconductor optical amplifier. IEEE Photonics Technology Letters , 2004, 16(7): 1760–1762
doi: 10.1109/LPT.2004.828521
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[7] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[8] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[9] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[10] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[11] Zheng ZHANG, Yu YU, Xinliang ZHANG. Simulation for all-optical format conversion from NRZ-DPSK to RZ-DPSK[J]. Front Optoelec Chin, 2011, 4(3): 320-324.
[12] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[13] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed