Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 347-353    https://doi.org/10.1007/s12200-010-0118-5
RESEARCH ARTICLE
A novel architecture of optical code label generation and recognition for optical packet switching
Bin LI, Fengguang LUO(), Zhihua YU, Weilin ZHOU, Liangjia ZONG
Wuhan National Laboratory for Optoeletronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(556 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel architecture of optical code (OC) label generation and recognition for optical packet switching (OPS) by using super structured fiber Bragg grating (SSFBG) is proposed. The OC label is generated and recognized by a label generator and recognizer, respectively. The label generator is composed of N encoders in parallel, and it can generate 2N kinds of serial optical code labels (SOCLs) for indicating 2N network routing information. The label recognizer can decode SOCLs by N decoders in parallel and provides label information to the switching control unit so that clock information is not required during the decoding process. In the switch nodes, handling of the high-speed information payload stream and the recognition of the OC label are performed in the optical domain, while processing of the routing information remains in the electrical domain. This approach could be a promising solution for an OPS network with high capacity, good quality of service (QoS), multi-service function and high security. In this experiment, we demonstrate 40 Gbps 256 label optical packet switching that employs clockless SOCL processing.

Keywords optical code (OC) label      serial optical code label (SOCL)      label switching      encoder/decoder      optical packet switching (OPS)     
Corresponding Author(s): LUO Fengguang,Email:fgluo@mail.hust.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Bin LI,Fengguang LUO,Zhihua YU, et al. A novel architecture of optical code label generation and recognition for optical packet switching[J]. Front Optoelec Chin, 2010, 3(4): 347-353.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0118-5
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/347
Fig.1  Schematic of optical encoding and decoding process
Fig.2  Architecture of OC label generator and its encoding process (EDFA: erbium-doped fiber amplifier)
Fig.3  Architecture of label recognizer and its decoding process (O/E: optical/electronic)
Fig.4  Illustration of experimental setup and results. (a) Inputting ultrashort pulse; (b) SOCL encoding waveform; (c) SOCL decoding waveform; (d) outputting 8-bit parallel digital data
Fig.5  Experimental setup and results. (a) Inputting ultrashort pulse; (b) SOCL encoding results; (c) inputting packets with SOCL; (d) SOCL decoding results; (e) packets switched from output port-1; (f) packets switched from output port-2
1 Kitayama K, Wang X, Wada N. OCDMA over WDM PON-solution path to gigabit-symmetric FTTH. Journal of Lightwave Technology , 2006, 24(4): 1654–1662
doi: 10.1109/JLT.2006.871030
2 Yuang M, Chao I, Lo B, Tien P, Chen J, Wei C, Lin Y, Lee S S W, Chien C. HOPSMAN: an experimental testbed system for a 10-Gb/s optical packet-switched WDM metro ring network. IEEE Communications Magazine , 2008, 46(7): 158–166
doi: 10.1109/MCOM.2008.4557060
3 Yuang M C, Lee S S W, Tien P L, Lin Y M, Shih J, Tsai F, Chen A. Optical coarse packet-switched IP-over-WDM network OPSINET: technologies and experiments. IEEE Journal on Selected Areas in Communications , 2006, 24(8): 117–127
doi: 10.1109/JSAC.2006.1677259
4 Li H, Thng I L J. Cost-saving two-layer wavelength conversion in optical switching network. Journal of Lightwave Technology , 2006, 24(2): 705–712
doi: 10.1109/JLT.2005.862447
5 Liboiron-Ladouceur O, Small B A, Bergman K. Physical layer scalability of WDM optical packet interconnection networks. Journal of Lightwave Technology , 2006, 24(1): 262–270
doi: 10.1109/JLT.2005.859852
6 Tian C, Zhang Z, Ibsen M, Petropoulos P, Richardson D J. Demonstration of a 16-channel code-reconfigurable OCDMA/ DWDM system. In: Proceedings of OFC . 2007, OMO2
7 Parmigiani F, Oxenl?we L K, Galili M, Ibsen M, Zibar D, Petropoulos P, Richardson D J, Clausen A T, Jeppesen P. All-optical 160-Gbit/s retiming system using fiber grating based pulse shaping technology. Journal of Lightwave Technology , 2009, 27(9): 132–140
doi: 10.1109/JLT.2008.929419
8 Wang X, Matsushima K, Nishiki A, Wada N, Kitayama K. High reflectivity superstructured FBG for coherent optical code generation and recognition. Optics Express , 2004, 12(22): 5457–5468
doi: 10.1364/OPEX.12.005457
9 Chi N, Xu L, Christiansen L, Yvind K, Zhang J, Holm-Nielsen P, Peucheret C, Zhang C, Jeppesen P. Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IP-over-WDM networks. In: Proceedings of OFC . 2003, 2: 792–794
10 Yu J, Chang G K, Chowdhury A. Instantaneous clock recovery for burst-mode optical label and payload by using a conventional data receiver. In: Proceedings of OFC . 2005, 3: OWK6
11 Cao J, Jeon M, Pan Z, Bansal Y, Wang Z, Zhu Z, Hernandez V, Taylor J, Akella V, Yoo S, Okamoto K, Kamei S. Error-free multi-hop cascaded operation of optical label switching routers with all-optical label swapping. In: Proceedings of OFC . 2003, 2: 791–792
12 Sasaki K, Sarashina M, Kobayashi S, Tamai H, Nishiki A, Ushikubo T. A new π/2-shift-BPSK signal by superstructure fibre Bragg grating en/decoder. In: Proceedings of ECOC . 2005, 3: 595–596
13 Sarashina M, Tamai H, Sasaki K, Kashima M. Demonstration of asynchronous ultrahigh speed optical label switching using SSFBGs label recognizer. In: Proceedings of OFC . 2006, JThB56
14 Parmigiani F, Oxenlowe L K, Galili M, Ibsen M, Zibar D, Petropoulos P, Richardson D J, Clausen A T, Jeppesen P. All-optical 160-Gbit/s RZ data retiming system incorporating a pulse shaping fibre Bragg grating. In: Proceedings of ECOC . 2007, 16–20
15 Parmigiani F, Petropoulos P, Ibsen M, Richardson D J. Pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating. Journal of Lightwave Technology , 2006, 24(1): 357–364
doi: 10.1109/JLT.2005.860157
16 Wang X, Wada N, Miyazaki T, Cincotti G, Kitayama K. Field trial of 3-WDM×10-OCDMA×10.71-Gb/s asynchronous WDM/DPSK-OCDMA using hybrid E/D. Journal of Lightwave Technology , 2007, 25(1): 207–215
doi: 10.1109/JLT.2006.887186
17 Parmigiani F, Finot C, Mukasa K, Ibsen M, Roelens M A F, Petropoulos P, Richardson D J. Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Optics Express , 2006, 14(17): 7617–7622
doi: 10.1364/OE.14.007617
18 Wang X, Matsushima K, Kitayama K, Nishiki A, Wada N, Kubota F. High performance optical code generation and recognition by use of a 511-chip 640-Gchip/s phase-shifted superstructured fiber Bragg grating. Optics Letters , 2005, 30(4): 355–357
doi: 10.1364/OL.30.000355
20 Wang X, Kataoka N, Wada N, Miyazaki T, Cincotti G, Kitayama K. Flexible 10 Gbps, 8-user DPSK-OCDMA system with 16×16 ports encoder and 16-level phase-shifted SSFBG decoders. In: Proceedings of OFC . 2008, OMR2
21 Wang X, Kitayama K. Analysis of beat noise in coherent and incoherent time-spreading OCDMA. Journal of Lightwave Technology , 2004, 22(10): 2226–2235
doi: 10.1109/JLT.2004.833267
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed