Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 418-422    https://doi.org/10.1007/s12200-010-0122-9
RESEARCH ARTICLE
Temperature measurement based on photonic crystal modal interferometer
Jian LIU, Hao ZHANG(), Bo LIU
Key Laboratory of Opto-Electronic Information and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China
 Download: PDF(205 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the interferences between core modes and cladding modes in photonic crystal fiber (PCF), a novel temperature sensor is presented and experimentally demonstrated. The peak wavelength of the interference spectrum linearly increased with an increase in temperature. A measurement sensitivity of 10.38 pm/°C was experimentally achieved for temperatures ranging from 30°C to 100°C. Experimental results also indicate that the curvature and transverse load do not have a distinguishable influence on the transmission spectrum of the proposed fiber sensor, which ensures its applicability for practical applications.

Keywords optical fiber sensor      temperature      photonic crystal fiber (PCF)      measurement     
Corresponding Author(s): ZHANG Hao,Email:haozhang@nankai.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Jian LIU,Hao ZHANG,Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0122-9
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/418
Fig.1  Schematic diagram of experiment setup
Fig.2  (a) Cross section of PCF; (b) splicing region between SMF and PCF
Fig.3  (a) Geometry of curvature test instrument; (b) illustration of transverse loading test instrument
Fig.4  Reflection spectra of proposed sensor for =10 mm and =30°C
Fig.5  Wavelength variation as function of temperature
Fig.6  Wavelength variation as function of curvature
Fig.7  Wavelength variation as function of transverse load
1 Rahimi S, Ban D, Xiao G, Zhang Z, Albert J. Temperature and strain sensors based on integration of tilted fiber Bragg gratings with a free spectral range matched interrogation system. IEEE Journal of Sensors , 2009, 9(7): 858–861
doi: 10.1109/JSEN.2009.2024710
2 Mizunami T, Djambova T, Niiho T, Gupta S. Bragg gratings in multimode and few-mode optical fibers. Journal of Lightwave Technology , 2000, 18(2): 230–235
doi: 10.1109/50.822797
3 Mosquera L, Sáez-Rodriguez D, Cruz J L, Andrés M V. In-fiber Fabry-Perot refractometer assisted by a long-period grating. Optics Letters , 2010, 35(4): 613–615
doi: 10.1364/OL.35.000613
4 Han M, Guo F, Lu Y. Optical fiber refractometer based on cladding-mode Bragg grating. Optics Letters , 2010, 35(3): 399–401
doi: 10.1364/OL.35.000399
5 Sun J, Chan C C, Tan K M, Dong X Y, Shum P. Application of an artificial neural network for simultaneous measurement of bending curvature and temperature with long period fiber gratings. Sensors and Actuators A: Physical , 2007, 137(2): 262–267
doi: 10.1016/j.sna.2007.03.019
6 Chehura E, James S W, Tatam R P. Temperature and strain discrimination using a single tilted fiber Bragg grating. Optics Communications , 2007, 275(2): 344–347
doi: 10.1016/j.optcom.2007.03.043
7 Starodumov A N, Zenteno L A, Monzon D, De La Rosa E. Fiber Sagnac interferometer temperature sensor. Applied Physics Letters , 1997, 70(1): 19–21
doi: 10.1063/1.119290
8 Li E, Wang X, Zhang C. Fiber-optic temperature sensor based on interference of selective higher-order modes. Applied Physics Letters , 2006, 89(9): 091119
doi: 10.1063/1.2344835
9 Jha R, Villatoro J, Badenes G. Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Applied Physics Letters , 2008, 93(19): 191106
doi: 10.1063/1.3025576
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Di WU, Yu JIA, Li WANG, Yueqiang SUN. Ship hull flexure measurement based on integrated GNSS/LINS[J]. Front. Optoelectron., 2019, 12(3): 332-340.
[3] Xiaoli JING, Haobo CHENG, Yongfu WEN. Shape reconstruction of large optical surface with high-order terms in fringe reflection technique[J]. Front. Optoelectron., 2019, 12(2): 180-189.
[4] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[5] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[6] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[7] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[8] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[9] Xin ZHANG, Jiawen JIAN, Han JIN, Peipeng XU. Nested microring resonator with a doubled free spectral range for sensing application[J]. Front. Optoelectron., 2017, 10(2): 144-150.
[10] Chenwenji WANG,Peili LI,Yuying GAN,Di CAO,Xiaozheng QIAO,Chen HE. Cross-correlation frequency-resolved optical gating scheme based on a periodically poled lithium niobate waveguide for an optical arbitrary waveform measurement[J]. Front. Optoelectron., 2017, 10(1): 70-79.
[11] Ran YAO,Dawei ZHANG,Bing ZOU,Jian XU. Junction temperature measurement of alternating current light-emitting-diode by threshold voltage method[J]. Front. Optoelectron., 2016, 9(4): 555-559.
[12] Xu YE,Haobo CHENG,Zhichao DONG,Hon-Yuen TAM. Error compensation for three-dimensional profile measurement system[J]. Front. Optoelectron., 2015, 8(4): 402-412.
[13] Weiwei ZHANG, Yiqing GAO, Xingdao HE. Boltzmann constant determined by fluorescent spectroscopy for verifying thermometers[J]. Front Optoelec, 2014, 7(1): 64-68.
[14] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
[15] Saeed OLYAEE, Zahra DASHTBAN, Muhammad Hussein DASHTBAN. Design and implementation of super-heterodyne nano-metrology circuits[J]. Front Optoelec, 2013, 6(3): 318-326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed