Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 423-428    https://doi.org/10.1007/s12200-010-0123-8
RESEARCH ARTICLE
Effect of clear atmospheric turbulence on quality of free space optical communications in Yemen
Khaleel S. ALTOWIJ1, Abdulsalam ALKHOLIDI1(), Habib HAMAM2
1. Faculty of Engineering, Electrical Engineering Department, Sana’a University, Sana’a 13527, Yemen; 2. Faculty of Engineering, University of Moncton, Moncton, N.B., EIA 3E9, Canada
 Download: PDF(250 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Free space optical (FSO) communication is one of the most recently developed modes of wireless communication. FSO is a technique used to convey data carried by a laser beam through the atmosphere. While FSO offers a broadband service, it requires a line of sight communication between the transmitter and receiver. The atmosphere has effects on the laser beam passing through it. For instance, the quality of data received is affected by the scattering and atmospheric turbulence. The atmospheric turbulence is caused by both temporary and special random fluctuations of the refractive index along the optical propagation path. Clear air turbulence impairs the performance of the FSO due to the fluctuation in the intensity of the laser beam. By referring to the two criteria, namely bit error rate (BER) and signal to noise ratio (SNR), this work includes analysis of the effect of atmospheric turbulence on FSO systems in Yemen by using an appropriate model.

Keywords atmospheric turbulence      scintillation      refractive index      free space optical (FSO) communication system      bit error rate (BER)      signal to noise ratio (SNR)     
Corresponding Author(s): ALKHOLIDI Abdulsalam,Email:abdulsalam.alkholidi@gmail.com   
Issue Date: 05 December 2010
 Cite this article:   
Khaleel S. ALTOWIJ,Abdulsalam ALKHOLIDI,Habib HAMAM. Effect of clear atmospheric turbulence on quality of free space optical communications in Yemen[J]. Front Optoelec Chin, 2010, 3(4): 423-428.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0123-8
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/423
Fig.1  Intensity fluctuations against transmission range
Fig.2  Beam spreading versus transmission range
Fig.3  Waist of beam with turbulence versus scintillation
Fig.4  SNR versus transmission range
Fig.5  BER versus transmission range
Fig.6  SNR with and without turbulence, SNR and SNR, respectively, versus transmission range
Fig.7  BER versus waist of beam with turbulence
Fig.8  BER versus transmission range for SNR and SNR
1 Belmonte A, Rodriguez A, Dios F, Cameron A. Phase compensation considerations on coherent, free-space laser communications system. Proceedings of SPIE , 2007, 6736: 6736-6744
2 Motlagh A C, Ahmadi V, Ghassemlooy Z, Abedi K. The effect of atmospheric turbulence on the performance of the free space optical communications. In: Proceedings of the 6th International Symposium on Communication Systems, Networks and Digital Signal Processing . 2008, 540-543
doi: 10.1109/CSNDSP.2008.4610725
3 Li J, Uysal M. Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection. In: Proceedings of Global Telecommunications Conference . 2003, 5: 2654-2658
4 Zhu X M, Kahn J M. Free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications , 2002, 50(8): 1293-1300
doi: 10.1109/TCOMM.2002.800829
5 Chaman-Motlagh A, Ahmadi V, Ghassemlooy Z. A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers. Journal of Modern Optics , 2010, 57(1): 37-42
doi: 10.1080/09500340903497465
6 Prokes A. Modeling of atmospheric turbulence effect on terrestrial FSO link. Radio Engineering , 2009, 18(1): 42-47
7 Wilkins G D. The diffraction limited aperture of the atmosphere and its effects on free space laser communications. In: Proceedings of the IEEE National Aerospace and Electronics Conference . 1992, 3: 1158-1163
8 Ishimaru A. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1978
9 Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media. Washington: SPIE Optical Engineering Press, 1998
10 Anguita J, Djordjevic I, Neifeld M, Vasic B. Shannon capacities and error-correction codes for optical atmospheric turbulent channels. Journal of Optical Networking , 2005, 4(9): 586-601
doi: 10.1364/JON.4.000586
11 Hemmati H. Near-Earth Laser Communications. California: Taylor & Francis Group, 2008
12 Fried D L. Limiting resolution looking down through the atmosphere. Journal of the Optical Society of America , 1966, 56(10): 1380-1384
doi: 10.1364/JOSA.56.001380
13 Valley G C. Isoplanatic degradation of tilt correction and short-term imaging systems. Applied Optics , 1980, 19(4): 574-577
doi: 10.1364/AO.19.000574
14 Tyson R K. Introduction to Adaptive Optics. Bellingham: SPIE Press, 2000
15 Willebrand H, Ghuman B S. Free-Space Optics: Enabling Optical Connectivity in Today’s Networks. Indianapolis: Sams Publishing, 2002
16 Kellaway B, Richardson M A. Laser analysis-part 3. Journal of Battlefield Technology , 2005, 8(1): 30
17 Xu G L, Zhang X P, Wei J W, Fu X Y. Influence of atmospheric turbulence on FSO link performance. Proceedings of SPIE , 2004, 5281: 816-823
doi: 10.1117/12.523470
18 Andrews L C, Phillips R L, Hopen C Y. Laser Beam Scintillation with Applications. Washington: SPIE Optical Engineering Press, 2001
doi: 10.1117/3.412858
19 Yuksel H. Studies of the effects of atmospheric turbulence on free space optical communications. Dissertation for the Doctoral Degree . College Park: University of Maryland, 2005, 76-78
[1] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[2] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[3] Dongwei WU,Jianjun LIU,Hao HAN,Zhanghua HAN,Zhi HONG. A high Q terahertz asymmetrically coupled resonator and its sensing performance[J]. Front. Optoelectron., 2015, 8(1): 68-72.
[4] Jean TEMGA,Deming LIU,Minming ZHANG. Improved pilot data aided feed forward based on maximum likelihood for carrier phase jitter recovery in coherent optical orthogonal frequency division multiplexing[J]. Front. Optoelectron., 2014, 7(4): 493-500.
[5] Somaye SERAJMOHAMMADI, Hamed ALIPOUR-BANAEI. Band gap properties of 2D square lattice photonic crystal composed of rectangular cells[J]. Front Optoelec, 2013, 6(3): 346-352.
[6] Mzee S. MNDEWA, Xiuhua YUAN, Dexiu HUANG. Evaluation of light beams for short and medium range wireless communications[J]. Front Optoelec Chin, 2009, 2(4): 393-396.
[7] Mzee S. MNDEWA, Xiuhua YUAN, Dexiu HUANG, Bangxu LI. Effects of light propagation in middle intensity atmospheric turbulence[J]. Front Optoelec Chin, 2009, 2(3): 312-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed