Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 364-369    https://doi.org/10.1007/s12200-010-0124-7
RESEARCH ARTICLE
Mach-Zehnder interferometer based on core-cladding mode coupling in single mode fibers
Yan LIU1, Bo LIU1(), Hao ZHANG1, Yinping MIAO2
1. Key Laboratory of Opto-Electronic Information and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China; 2. Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384, China
 Download: PDF(196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a novel simple but effective method is presented to construct compact all-fiber Mach-Zehnder (M-Z) interferometer based on CO2-laser-machined micro-notches in single mode fibers. Interference fringes are obtained, and temperature, force, and bending characteristics of the interferometer have been experimentally investigated. Such a compact fiber component with acceptable sensing performances makes it a good candidate for the measurement of numerous physical parameters.

Keywords Mach-Zehnder (M-Z) interferometer      micro-notch      optical fiber sensor      single mode fiber     
Corresponding Author(s): LIU Bo,Email:liubo@mail.nankai.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Yan LIU,Bo LIU,Hao ZHANG, et al. Mach-Zehnder interferometer based on core-cladding mode coupling in single mode fibers[J]. Front Optoelec Chin, 2010, 3(4): 364-369.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0124-7
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/364
Fig.1  Schematic diagram of proposed M-Z interferometer
Fig.2  Measured wavelength spectra for different interference arm lengths. (a) =5 mm; (b) =20 mm; (c) =30 mm; (d) =40 mm
Fig.3  Peak wavelength shift as a function of temperature
Fig.4  Force characteristics in three different cases. (a) and (b) for lateral plane force; (c) and (d) for lateral point force; (e) and (f) for axial force (A peak around 718 nm is studied)
Fig.5  Spectra responds with bending radius decreases. (a) Bending in - plane; (b) bending in - plane
1 Nguyen L V, Hwang D, Moon D S, Chung Y. Tunable comb-filter using thermally expanded core fiber and ytterbium doped fiber and its application to multi-wavelength fiber laser. Optics Communications , 2008, 281(23): 5793–5796
doi: 10.1016/j.optcom.2008.08.033
2 Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Optics Express , 2008, 16(15): 11369–11375
doi: 10.1364/OE.16.011369
3 Lu P, Men L, Sooley K, Chen Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters , 2009, 94(13): 131110
doi: 10.1063/1.3115029
4 Choi H Y, Kim M J, Lee B H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Optics Express , 2007, 15(9): 5711–5720
doi: 10.1364/OE.15.005711
5 Tian Z, Yam S S H, Loock H P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technology Letters , 2008, 20(16): 1387–1389
doi: 10.1109/LPT.2008.926832
6 Villatoro J, Finazzi V, Badenes G, Pruneri V. Highly sensitive sensors based on photonic crystal fiber modal interferometers. Journal of Sensors , 2009, 2009(2009): 747803
7 Xia T H, Zhang A P, Gu B, Zhu J J. Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers. Optics Communications , 2010, 283(10): 2136–2139
doi: 10.1016/j.optcom.2010.01.031
8 Lee B H, Nishii J. Dependence of fringe spacing on the grating separation in a long-period fiber grating pair. Applied Optics , 1999, 38(16): 3450–3459
doi: 10.1364/AO.38.003450
9 Dong X Y, Yang X F, Shum P, Chan C C. Tunable WDM filter with 0.8-nm channel spacing using a pair of long-period fiber gratings. IEEE Photonics Technology Letters , 2005, 17(4): 795–797
doi: 10.1109/LPT.2005.843665
10 Rashleigh S. Origins and control of polarization effects in single-mode fibers. Journal of Lightwave Technology , 1983, 1(2): 312–331
doi: 10.1109/JLT.1983.1072121
[1] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[2] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[3] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[4] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed