Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 399-407    https://doi.org/10.1007/s12200-010-0126-5
RESEARCH ARTICLE
Propagating property of flat-topped multi-Gaussian beams passing through a misaligned optical system with two-lens and two-diaphragm
Hongbin SHEN1(), Gang LI1, Han ZHANG2, Wengang HU1, Bing ZHOU1, Bingqi LIU1
1. Department of Optics and Electronic Engineering, Ordnance Engineering College, Shijiazhuang 050003, China; 2. Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China
 Download: PDF(385 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The optical elements’ maladjustment is a potential threaten in optical systems, thus, the transmission feature of laser beams passing through a misaligned optical system is widely studied. By using approximate expansion of circle diaphragm and generalized Huygens-Fresnel diffraction formula, a universal analytic expression is deduced for the flat-topped multi-Gaussian beams passing through a misaligned optical system with two-lens and two-diaphragm. The study on the propagating property of fundamental-mode Gaussian beams and a flat-topped multi-Gaussian beam is carried out accordingly. The expansion of complex Gauss function of misaligned optical circle diaphragm is given, as well as a group of new parameter values of the expansion of complex Gauss function. By using the new parameter values, the influence of disadjust parameters on output intensity distribution is analyzed numerically. The result shows that the diaphragms’ offset can make the beams offset or covered, and the second diaphragm influences more; the angle deflection of diaphragms can make light beams compressed in the deflection direction, and the first diaphragm influences more; the offset of the first lens can weaken light intensity in the same direction of the lens offset, and the offset of the second lens can weaken light intensity in the opposite direction of the lens offset; the angle deflection of the first lens can make light beams move to the opposite direction, and the angle deflection of the second lens has no influence; when all the diaphragms and the lenses are disadjust, the angle deflection of the first lens has a vital influence to the output intensity distribution.

Keywords laser optics      flat-topped multi-Gaussian beams      misaligned optical system      circle diaphragms     
Corresponding Author(s): SHEN Hongbin,Email:shenhongbin11@sina.com   
Issue Date: 05 December 2010
 Cite this article:   
Hongbin SHEN,Gang LI,Han ZHANG, et al. Propagating property of flat-topped multi-Gaussian beams passing through a misaligned optical system with two-lens and two-diaphragm[J]. Front Optoelec Chin, 2010, 3(4): 399-407.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0126-5
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/399
Fig.1  Sketch map of optical system with two-lens and two-diaphragm
FmGm
0.07559598490+0.09012483874i0.9287553876+12.99040532i
0.05330581361+0.1089269224i0.9303989513-12.75022110i
-0.6950302475+0.09507580544i1.818923321-4.635611394i
0.7058623794+0.2364144607i1.567848188+1.673830479i
0.6636344189+0.1859935477i1.350921436+0.4065192793i
-0.7558507154-0.4085011653i2.046252095+4.847208786i
0.03729017757-0.1768490893i1.092441026-2.492575124i
0.1408599406+0.3774909678i1.687328598+8.824665168i
0.5223302799-0.0005666655990i1.315310132-0.8774384876i
0.2341488018-0.3297827992i1.668229170-8.579171116i
Tab.1  Optimization value of and
Fig.2  Curves of real and imaginary parts of complex Gauss function based on Ref. []
Fig.3  Curves of real and imaginary parts of complex Gauss function based on this paper
Fig.4  Normalized intensity distribution in different propagating distances of flat-topped multi-Gaussian beams in normal situation. (a) Initial light beam; (b) =1000 mm; (c) =2000 mm; (d) =10000 mm
Fig.5  Output intensity distribution in normal situation
Fig.6  Output intensity distribution when one of the diaphragms is disadjust. (a) =1 mm; (b) =30°; (c) =1 mm; (d) =30°
Fig.7  Output intensity distribution when both of the diaphragms are disadjust. (a) ==1 mm; (b) ==30°
Fig.8  Output intensity distribution when just one lens is disadjust. (a) =1 mm; (b) ; (c) =1 mm; (d)
Fig.9  Output intensity distribution when both lenses are disadjust. (a) ==1 mm; (b)
Fig.10  Output intensity distribution when all lenses and diaphragms are disadjust (====1 mm, ==30°, )
1 Wen J J, Breazeale M A. A diffraction beam field expressed as the superposition of Gaussian beams. Journal of the Acoustical Society of America , 1988, 83(5): 1752–1756
doi: 10.1121/1.396508
2 Ding D, Liu X. Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture. Journal of the Optical Society of America A , 1999, 16(6): 1286–1293
doi: 10.1364/JOSAA.16.001286
3 Lu B, Luo S. Approximate propagation equations of flattened Gaussian beams passing through a paraxial ABCD system with hard-edge aperture. Journal of Modern Optics , 2001, 48(15): 2169–2178
doi: 10.1080/09500340108235507
4 Jiang H L, Zhao D M, Mei Z R. Propagation characteristics of the rectangular flattened Gaussian beams through circular apertured and misaligned optical systems. Optics Communications , 2006, 260(1): 1–7
doi: 10.1016/j.optcom.2005.09.075
5 Chen J N. Propagation and transformation of flat-topped multi-Gaussian beams in a general nonsymmetrical apertured double-lens system. Journal of the Optical Society of America A , 2007, 24(1): 84–92
doi: 10.1364/JOSAA.24.000084
6 Gori F. Flattened Gaussian beams. Optics Communications , 1994, 107(5-6): 335–341
doi: 10.1016/0030-4018(94)90342-5
7 Tovar A A. Propagation of flat-topped multi-Gaussian laser beams. Journal of the Optical Society of America A , 2001, 18(8): 1897–1904
doi: 10.1364/JOSAA.18.001897
8 Bagini V, Borghi R, Gori F, Pacileo A M, Santarsiero M, Ambrosini D, Spagnolo G S. Propagation of axially symmetric flattened Gaussian beams. Journal of the Optical Society of America A , 1996, 13(7): 1385–1394
doi: 10.1364/JOSAA.13.001385
9 Cai Y, Lin Q. Light beams with elliptical flat-topped profiles. Journal of Optics A: Pure and Applied Optics , 2004, 6(4): 390–395
doi: 10.1088/1464-4258/6/4/015
10 Cai Y, Lin Q. Properties of a flattened Gaussian beam in the fractional Fourier transform plane. Journal of Optics A: Pure and Applied Optics , 2003, 5(3): 272–275
doi: 10.1088/1464-4258/5/3/321
11 Cai Y, He S. Partially coherent flattened Gaussian beam and its paraxial propagation properties. Journal of the Optical Society of America A , 2006, 23(10): 2623–2628
doi: 10.1364/JOSAA.23.002623
12 Eyyuboglu H T. Propagation of Hermite-cosh-Gaussian laser beams in turbulent atmosphere. Optics Communications , 2005, 245(1-6): 37–47
13 Cai Y, He S. Propagation of various dark hollow beams in a turbulent atmosphere. Optics Express , 2006, 14(4): 1353–1367
doi: 10.1364/OE.14.001353
14 Cai Y. Propagation of various flat-topped beams in a turbulent atmosphere. Journal of Optics A: Pure and Applied Optics , 2006, 8(6): 537–545
doi: 10.1088/1464-4258/8/6/008
15 Eyyuboglu H T, Arpali C, Baykal Y. Flat topped beams and their characteristics in turbulent media. Optics Express , 2006, 14(10): 4196–4207
doi: 10.1364/OE.14.004196
16 Chu X, Ni Y, Zhou G. Propagation analysis of flattened circular Gaussian beams with a circular aperture in turbulent atmosphere. Optics Communications , 2007, 274(2): 274–280
doi: 10.1016/j.optcom.2007.02.035
17 Amarande S A. Beam propagation factor and the kurtosis parameter of flattened Gaussian beams. Optics Communications , 1996, 129(5-6): 311–317
18 Borghi R, Santarsiero M, Vicalvi S. Focal shift of focused flat-topped beams. Optics Communications , 1998, 154(5-6): 243–248
doi: 10.1016/S0030-4018(98)00247-8
19 Li Y. Light beams with flat-topped profiles. Optics Letters , 2002, 27(12): 1007–1009
doi: 10.1364/OL.27.001007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed