Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 387-393    https://doi.org/10.1007/s12200-010-0128-3
RESEARCH ARTICLE
Carrier radiation distribution in organic light-emitting diodes
Lei DING(), Fanghui ZHANG, Qian JIANG, Honggang YAN, Dinghan LIU
School of Electric and Information Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
 Download: PDF(374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is based on the analysis of white organic electroluminescent device electroluminescent spectrum to explain the regular pattern of carrier radiation distribution. It has proved electron that is injected from cathode is satisfied with the regularity of radiation distribution on the organic emitting layer. This radiation distribution is related to several factors, such as electron injection capabilities, applied electrical field intensity, carrier mobility, etc. The older instruction design is ITO/2-TNATA/NPB/ADN:DCJTB:TBPe/Alq3/cathode. Get to change electron injector capabilities through using different cathode and also find electroluminescent spectrum to produce significant changes. Simultaneously, electron radiation quantity has some limitation, and electroluminescent spectrum reflects that spectral intensity does not change anymore when the ratio of cathode dopant reaches a value, namely, the quantity of electron’s radiation distribution gets to a saturated state on the organic emitting layer. It also shows the same spectrum variational phenomenon while changing the applied electrical field intensity. To put forward of the carrier radiation distribution is good for organic light emitting diode (OLED) luminescence properties analysis and research.

Keywords carrier radiation distribution      organic light emitting diode (OLED)      multiple dopants emission     
Corresponding Author(s): DING Lei,Email:ostrich132@163.com   
Issue Date: 05 December 2010
 Cite this article:   
Lei DING,Fanghui ZHANG,Qian JIANG, et al. Carrier radiation distribution in organic light-emitting diodes[J]. Front Optoelec Chin, 2010, 3(4): 387-393.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0128-3
https://academic.hep.com.cn/foe/EN/Y2010/V3/I4/387
Fig.1  Configurations of devices and molecular structures of organic materials used
Fig.2  Current density versus voltage and luminance versus voltage for LiF and Ca:Al alloy cathode
Fig.3  Efficiency versus current density curves for LiF and Ca:Al alloy cathode
Fig.4  Energy-level diagram of devices (energy level values of ADN, TBPe, and DCJTB are quoted from Refs. [,])
Fig.5  Absolute EL spectra of Ca:Al alloy cathode at a driving current of (a) 0.02 A and (b) 0.04 A
Fig.6  EL spectra of Ca:Al alloy cathode at a driving current of (a) 0.02 A, (b) 0.04 A, and (c) 0.08 A, and (d) the EL spectra of LiF/Al cathode at a driving current of 0.03, 0.05, 0.07, and 0.09 A
1 Duggal A R, Shiang J J, Heller C M, Foust D F. Organic light-emitting devices for illumination quality white light. Applied Physics Letters , 2002, 80(19): 3470–3472
doi: 10.1063/1.1478786
2 Hagler T W, Pakbaz K, Voss K, Heeger A J. Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. Physical Review B: Condensed Matter and Materials Physics , 1991, 44(16): 8652–8666
doi: 10.1103/PhysRevB.44.8652
3 Bradley D D C, Friend R H. Light-induced luminescence quenching in precursor-route poly(p-phenylene vinylene). Journal of Physics: Condensed Matter , 1989, 1(23): 3671–3678
doi: 10.1088/0953-8984/1/23/011
4 Hung L S, Zhang R Q, He P, Mason G. Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes. Journal of Physics D: Applied Physics , 2002, 35(2): 103–107
doi: 10.1088/0022-3727/35/2/302
5 Mori T, Fujikawa H, Tokito S, Taga Y. Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Applied Physics Letters , 1998, 73(19): 2763–2765
doi: 10.1063/1.122583
6 Heil H, Steiger J, Karg S, Gastel M, Ortner H, Von Seggern H, St??el M. Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode. Journal of Applied Physics , 2001, 89(1): 420–424
doi: 10.1063/1.1331651
7 Mason M G, Tang C W, Hung L S, Raychaudhuri P, Madathil J, Giesen D J, Yan J, Le Q T, Gao Y, Lee S T, Liao L S, Cheng L F, Salaneck W R, dos Santos D A, Bredas J L. Interfacial chemistry of Alq3 and LiF with reactive metals. Journal of Applied Physics , 2001, 89(5): 2756–2765
doi: 10.1063/1.1324681
8 Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes. Journal of Applied Physics , 1994, 75(3): 1656–1666
doi: 10.1063/1.356350
9 Hinneburg D, Popp P, Leonhardt J. Radiation-induced charge-carrier distribution in electrical fields. Radiation Physics and Chemistry , 1985, 26(5): 575–577
doi: 10.1016/0146-5724(85)90213-4
10 Chang M Y, Wang C H, Lin S C, Chen Y F. High-brightness, high-color-purity, white organic light-emitting diodes featuring multiple emission layers. Journal of Applied Physics , 2009, 105(6): 064318
doi: 10.1063/1.3097285
11 Turak A, Grozea D, Feng X D, Lu Z H, Aziz H, Hor A M. Metal/AlQ3 interface structures. Applied Physics Letters , 2002, 81(4): 766–768
doi: 10.1063/1.1494470
12 Bu H, Rabalais J W. Structure analysis of O2 and H2O chemisorption on a Si{100} surface. Surface Science , 1994, 301(1-3): 285–294
doi: 10.1016/0039-6028(94)91308-0
13 Aziz H, Popovic Z, Xie S, Hor A, Hu N, Tripp C, Xu G. Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices. Applied Physics Letters , 1998, 72(7): 756–758
doi: 10.1063/1.120867
14 Luo Y, Aziz H, Popovic Z D, Xu G. Electric-field-induced fluorescence quenching in dye-doped tris(8-hydroxyquinoline) aluminum layers. Applied Physics Letters , 2006, 89(10): 103505
doi: 10.1063/1.2337269
15 Jiang X Y, Zhang Z L, Zhu W Q, Xu S H. Highly efficient and stable white organic light emitting diode with triply doped structure. Displays , 2006, 27(4-5): 161–165
doi: 10.1016/j.displa.2006.05.002
16 Hamada Y, Kanno H, Tsujioka T, Takahashi H, Usuki T. Red organic light-emitting diodes using an emitting assist dopant. Applied Physics Letters , 1999, 75(12): 1682–1684
doi: 10.1063/1.124790
17 Feng J, Li F, Gao W B, Cheng G, Xie W F, Liu S Y. Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices. Applied Physics Letters , 2002, 81(16): 2935–2937
doi: 10.1063/1.1515884
18 Lee T W, Park O O, Cho H N, Kim Y C. Cascade energy transfer in dye-doped ternary polymer blend light-emitting diodes. Synthetic Metals , 2002, 131(1-3): 129–133
doi: 10.1016/S0379-6779(02)00175-3
19 Tallman D E, Vang C, Wallace G G, Bierwagen G P. Direct electrodeposition of polypyrrole on aluminum and aluminum alloy by electron transfer mediation. Journal of Electrochemical Society , 2002, 149(3): C173–C179
doi: 10.1149/1.1448820
20 Zhang Z L, Jiang X Y, Zhao W M, Zhu W Q, Zhang B X, Xu S H.A white organic light emitting diode with improved stability. Journal of Physics D: Applied Physics , 2001, 34(20): 3083–3087
doi: 10.1088/0022-3727/34/20/313
21 Shi J M, Tang C W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Applied Physics Letters , 2002, 80(17): 3201–3203
doi: 10.1063/1.1475361
22 Chen B J, Lee C S, Lee S T, Webb P, Chan Y C, Gambling W, Tian H, Zhu W H. Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials. Japanese Journal of Applied Physics , 2000, 39(3A): 1190–1192
doi: 10.1143/JJAP.39.1190
23 Seo J H, Seo J H, Park J H, Kim Y K, Kim J H, Hyung G W, Lee K H, Yoon S S. Highly efficient white organic light-emitting diodes using two emitting materials for three primary colors (red, green, and blue). Applied Physics Letters , 2007, 90(20): 203507
doi: 10.1063/1.2740191
[1] Neha JAIN, O. P. SINHA, Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
[2] Jiayun XIANG,Han NIE,Yibin JIANG,Jian ZHOU,Hoi Sing KWOK,Zujin ZHAO,Ben Zhong TANG. Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence[J]. Front. Optoelectron., 2015, 8(3): 274-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed