|
|
|
Carrier radiation distribution in organic light-emitting diodes |
Lei DING( ), Fanghui ZHANG, Qian JIANG, Honggang YAN, Dinghan LIU |
| School of Electric and Information Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China |
|
|
|
|
Abstract This paper is based on the analysis of white organic electroluminescent device electroluminescent spectrum to explain the regular pattern of carrier radiation distribution. It has proved electron that is injected from cathode is satisfied with the regularity of radiation distribution on the organic emitting layer. This radiation distribution is related to several factors, such as electron injection capabilities, applied electrical field intensity, carrier mobility, etc. The older instruction design is ITO/2-TNATA/NPB/ADN:DCJTB:TBPe/Alq3/cathode. Get to change electron injector capabilities through using different cathode and also find electroluminescent spectrum to produce significant changes. Simultaneously, electron radiation quantity has some limitation, and electroluminescent spectrum reflects that spectral intensity does not change anymore when the ratio of cathode dopant reaches a value, namely, the quantity of electron’s radiation distribution gets to a saturated state on the organic emitting layer. It also shows the same spectrum variational phenomenon while changing the applied electrical field intensity. To put forward of the carrier radiation distribution is good for organic light emitting diode (OLED) luminescence properties analysis and research.
|
| Keywords
carrier radiation distribution
organic light emitting diode (OLED)
multiple dopants emission
|
|
Corresponding Author(s):
DING Lei,Email:ostrich132@163.com
|
|
Issue Date: 05 December 2010
|
|
| 1 |
Duggal A R, Shiang J J, Heller C M, Foust D F. Organic light-emitting devices for illumination quality white light. Applied Physics Letters , 2002, 80(19): 3470–3472 doi: 10.1063/1.1478786
|
| 2 |
Hagler T W, Pakbaz K, Voss K, Heeger A J. Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. Physical Review B: Condensed Matter and Materials Physics , 1991, 44(16): 8652–8666 doi: 10.1103/PhysRevB.44.8652
|
| 3 |
Bradley D D C, Friend R H. Light-induced luminescence quenching in precursor-route poly(p-phenylene vinylene). Journal of Physics: Condensed Matter , 1989, 1(23): 3671–3678 doi: 10.1088/0953-8984/1/23/011
|
| 4 |
Hung L S, Zhang R Q, He P, Mason G. Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes. Journal of Physics D: Applied Physics , 2002, 35(2): 103–107 doi: 10.1088/0022-3727/35/2/302
|
| 5 |
Mori T, Fujikawa H, Tokito S, Taga Y. Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Applied Physics Letters , 1998, 73(19): 2763–2765 doi: 10.1063/1.122583
|
| 6 |
Heil H, Steiger J, Karg S, Gastel M, Ortner H, Von Seggern H, St??el M. Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode. Journal of Applied Physics , 2001, 89(1): 420–424 doi: 10.1063/1.1331651
|
| 7 |
Mason M G, Tang C W, Hung L S, Raychaudhuri P, Madathil J, Giesen D J, Yan J, Le Q T, Gao Y, Lee S T, Liao L S, Cheng L F, Salaneck W R, dos Santos D A, Bredas J L. Interfacial chemistry of Alq3 and LiF with reactive metals. Journal of Applied Physics , 2001, 89(5): 2756–2765 doi: 10.1063/1.1324681
|
| 8 |
Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes. Journal of Applied Physics , 1994, 75(3): 1656–1666 doi: 10.1063/1.356350
|
| 9 |
Hinneburg D, Popp P, Leonhardt J. Radiation-induced charge-carrier distribution in electrical fields. Radiation Physics and Chemistry , 1985, 26(5): 575–577 doi: 10.1016/0146-5724(85)90213-4
|
| 10 |
Chang M Y, Wang C H, Lin S C, Chen Y F. High-brightness, high-color-purity, white organic light-emitting diodes featuring multiple emission layers. Journal of Applied Physics , 2009, 105(6): 064318 doi: 10.1063/1.3097285
|
| 11 |
Turak A, Grozea D, Feng X D, Lu Z H, Aziz H, Hor A M. Metal/AlQ3 interface structures. Applied Physics Letters , 2002, 81(4): 766–768 doi: 10.1063/1.1494470
|
| 12 |
Bu H, Rabalais J W. Structure analysis of O2 and H2O chemisorption on a Si{100} surface. Surface Science , 1994, 301(1-3): 285–294 doi: 10.1016/0039-6028(94)91308-0
|
| 13 |
Aziz H, Popovic Z, Xie S, Hor A, Hu N, Tripp C, Xu G. Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices. Applied Physics Letters , 1998, 72(7): 756–758 doi: 10.1063/1.120867
|
| 14 |
Luo Y, Aziz H, Popovic Z D, Xu G. Electric-field-induced fluorescence quenching in dye-doped tris(8-hydroxyquinoline) aluminum layers. Applied Physics Letters , 2006, 89(10): 103505 doi: 10.1063/1.2337269
|
| 15 |
Jiang X Y, Zhang Z L, Zhu W Q, Xu S H. Highly efficient and stable white organic light emitting diode with triply doped structure. Displays , 2006, 27(4-5): 161–165 doi: 10.1016/j.displa.2006.05.002
|
| 16 |
Hamada Y, Kanno H, Tsujioka T, Takahashi H, Usuki T. Red organic light-emitting diodes using an emitting assist dopant. Applied Physics Letters , 1999, 75(12): 1682–1684 doi: 10.1063/1.124790
|
| 17 |
Feng J, Li F, Gao W B, Cheng G, Xie W F, Liu S Y. Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices. Applied Physics Letters , 2002, 81(16): 2935–2937 doi: 10.1063/1.1515884
|
| 18 |
Lee T W, Park O O, Cho H N, Kim Y C. Cascade energy transfer in dye-doped ternary polymer blend light-emitting diodes. Synthetic Metals , 2002, 131(1-3): 129–133 doi: 10.1016/S0379-6779(02)00175-3
|
| 19 |
Tallman D E, Vang C, Wallace G G, Bierwagen G P. Direct electrodeposition of polypyrrole on aluminum and aluminum alloy by electron transfer mediation. Journal of Electrochemical Society , 2002, 149(3): C173–C179 doi: 10.1149/1.1448820
|
| 20 |
Zhang Z L, Jiang X Y, Zhao W M, Zhu W Q, Zhang B X, Xu S H.A white organic light emitting diode with improved stability. Journal of Physics D: Applied Physics , 2001, 34(20): 3083–3087 doi: 10.1088/0022-3727/34/20/313
|
| 21 |
Shi J M, Tang C W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Applied Physics Letters , 2002, 80(17): 3201–3203 doi: 10.1063/1.1475361
|
| 22 |
Chen B J, Lee C S, Lee S T, Webb P, Chan Y C, Gambling W, Tian H, Zhu W H. Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials. Japanese Journal of Applied Physics , 2000, 39(3A): 1190–1192 doi: 10.1143/JJAP.39.1190
|
| 23 |
Seo J H, Seo J H, Park J H, Kim Y K, Kim J H, Hyung G W, Lee K H, Yoon S S. Highly efficient white organic light-emitting diodes using two emitting materials for three primary colors (red, green, and blue). Applied Physics Letters , 2007, 90(20): 203507 doi: 10.1063/1.2740191
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|