Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 338-342    https://doi.org/10.1007/s12200-011-0132-2
RESEARCH ARTICLE
Hybrid fabricating of silica micro/nanofibers
Ping ZHAO, Zhao WU, Kaisheng CHEN, Xinliang ZHANG()
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(250 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report a hybrid two-step approach for fabricating silica micro/nanofibers with different diameters (the minimum one down to 180 nm). Due to tapering and etching techniques introduced to this approach, the time is reduced from hundreds of minutes to several minutes to manufacture silica nanofibers by etching and the complexity of tapering mechanical system is brought down, because this approach has the ability to control the micro/nanofiber diameter on a nanometer-scale. Uniform nanofibers with losses as low as 0.05 dB/mm at 1.55 μm wavelength are obtained suggesting the advantage of the hybrid approach to build up micro/nanofiber-based devices, especially in locally changing the structure of micro/nanofiber.

Keywords nano-fabrication      micro/nanofiber      sub-wavelength-diameter fiber      nanophotonics     
Corresponding Author(s): ZHANG Xinliang,Email:xlzhang@mail.hust.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Ping ZHAO,Zhao WU,Kaisheng CHEN, et al. Hybrid fabricating of silica micro/nanofibers[J]. Front Optoelec Chin, 2011, 4(3): 338-342.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0132-2
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/338
Fig.1  (a) Whole process of hybrid two-step fabrication, single mode fiber (SMF); (b) Step 1 of drawing silica micro fibers. Optical fiber is fixed on two stages. One stage can be horizontally pulled by a motor. The whole equipment is covered by a plexiglas box to avoid air turbulence; (c) Step 2 of etching procedure. The buffer hydrogen fluoride solution is composed of 45 mL 0.36-w.t. hydrofluoric acid, 20 mg ammonium fluoride and 150 mL deionized water
Fig.2  SEM images of silica MNFs fabricated by hybrid approach. (a) Silica MNF with diameter of 180 nm; (b) silica MNF with diameter of 500 nm; (c) silica MNF with diameter of 770 nm; (d) a part of a 20-mm-long silica nanofiber with a diameter of 900 nm
Fig.3  Correlation of silica MNF diameter () and time () in an etching procedure
Fig.4  (a) Setup for measuring losses of silica MNFs. is optical wavelength and arrow stands for transmission direction; (b) an optical microscope picture of a 920-nm-diameter silica nanofiber supported by a bare optical fiber. Nanofiber guides 628 nm light and transmits it to right end
1 Gattass R R, Svacha G T, Tong L M, Mazur E. Supercontinuum generation in submicrometer diameter silica fibers. Optics Express , 2006, 14(20): 9408-9414
doi: 10.1364/OE.14.009408 pmid:19529325
2 Zhang Y, Xu E M, Huang D X, Zhang X L. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters , 2009, 21(17): 1202-1204
doi: 10.1109/LPT.2009.2024215
3 Zhang Y, Zhang X L, Chen G J, Xu E M, Huang D X. A microwave photonic notch filter using a microfiber ring resonator. Chinese Physics Letters , 2010, 27(7): 074207
doi: 10.1088/0256-307X/27/7/074207
4 Wang Z, Chiang K S, Liu Q. All-fiber tunable microwave photonic filter based on a cladding-mode coupler. IEEE Photonics Technology Letters , 2010, 22(16): 1241-1243
doi: 10.1109/LPT.2010.2053352
5 Sumetsky M, Windeler R S, Dulashko Y, Fan X. Optical liquid ring resonator sensor. Optics Express , 2007, 15(22): 14376-14381
doi: 10.1364/OE.15.014376 pmid:19550715
6 Kien F L, Balykin V I, Hakuta K. Scattering of an evanescent light field by a single cesium atom near a nanofiber. Physical Review A , 2006, 73(1): 013819
7 Tsou P H, Chou C K, Saldana S M, Hung M C, Kameoka J. The fabrication and testing of electrospun silica nanofiber membranes for the detection of proteins. Nanotechnology , 2008, 19(44): 445714
doi: 10.1088/0957-4484/19/44/445714 pmid:19081800
8 Klimov V V, Ducloy M. Spontaneous emission rate of an excited atom placed near a nanofiber. Physical Review A , 2004, 69(1): 013812
doi: 10.1103/PhysRevA.69.013812
9 Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express , 2004, 12(6): 1025-1035
doi: 10.1364/OPEX.12.001025 pmid:19474918
10 Wiederhecker G S, Cordeiro C M B, Couny F, Benabid F, Maier S A, Knight J C, Cruz C H B, Fragnito H L. Field enhancement within an optical fibre with a subwavelength air core. Nature Photonics , 2007, 1(2): 115-118
doi: 10.1038/nphoton.2006.81
11 Foster M A, Turner A C, Lipson M, Gaeta A L. Nonlinear optics in photonic nanowires. Optics Express , 2008, 16(2): 1300-1320
doi: 10.1364/OE.16.001300 pmid:18542203
12 Tong L, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature , 2003, 426(6968): 816-819
doi: 10.1038/nature02193 pmid:14685232
13 Tong L M, Lou J Y, Ye Z Z, Svacha G T, Mazur E. Self-modulated taper drawing of silica nanowires. Nanotechnology , 2005, 16(9): 1445-1448
doi: 10.1088/0957-4484/16/9/004
14 Brambilla G, Koizumi F, Feng X, Richardson D J. Compound-glass optical nanowires. Electronics Letters , 2005, 41(7): 400-402
doi: 10.1049/el:20058381
15 Tong L M, Hu L L, Zhang J J, Qiu J R, Yang Q, Lou J Y, Shen Y H, He J L, Ye Z Z. Photonic nanowires directly drawn from bulk glasses. Optics Express , 2006, 14(1): 82-87
doi: 10.1364/OPEX.14.000082 pmid:19503319
16 Chaudhari C, Suzuki T, Ohishi Y. Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers. Journal of Lightwave Technology , 2009, 27(12): 2095-2099
doi: 10.1109/JLT.2008.2007223
17 Xuan H F, Jin W, Zhang M. CO2 laser induced long period gratings in optical microfibers. Optics Express , 2009, 17(24): 21882-21890
doi: 10.1364/OE.17.021882 pmid:19997432
18 Fang X, Liao C R, Wang D N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Optics Letters , 2010, 35(7): 1007-1009
doi: 10.1364/OL.35.001007 pmid:20364199
19 Zhang Y, Lin B, Tjin S C, Zhang H, Wang G, Shum P, Zhang X. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Optics Express , 2010, 18(25): 26345-26350
doi: 10.1364/OE.18.026345 pmid:21164985
20 Haddock H S, Shankar P M, Mutharasan R. Fabrication of biconical tapered optical fibers using hydrofluoric acid. Materials Science and Engineering B , 2003, 97(1): 87-93
doi: 10.1016/S0921-5107(02)00434-8
21 Zhang E J, Sacher W D, Poon J K S. Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers. Optics Express , 2010, 18(21): 22593-22598
doi: 10.1364/OE.18.022593 pmid:20941156
22 Vienne G, Li Y, Tong L. Effect of host polymer on microfiber resonator. IEEE Photonics Technology Letters , 2007, 19(18): 1386-1388
doi: 10.1109/LPT.2007.903340
23 Jiang X S, Tong L M, Vienne G, Guo X, Tsao A, Yang Q, Yang D R. Demonstration of optical microfiber knot resonators. Applied Physics Letters , 2006, 88(22): 223501
doi: 10.1063/1.2207986 pmid:19738916
24 Jiang X S, Chen Y, Vienne G, Tong L M. All-fiber add-drop filters based on microfiber knot resonators. Optics Letters , 2007, 32(12): 1710-1712
doi: 10.1364/OL.32.001710 pmid:17572755
25 Tong L M, Lou J Y, Gattass R R, He S, Chen X W, Liu L, Mazur E. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Letters , 2005, 5(2): 259-262 15794607
doi: 10.1021/nl0481977
[1] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[2] Xiaoyan SUN, Peng HUANG, Jiefeng ZHAO, Li WEI, Nan ZHANG, Dengfeng KUANG, Xiaonong ZHU. Characteristic control of long period fiber grating (LPFG) fabricated by infrared femtosecond laser[J]. Front Optoelec, 2012, 5(3): 334-340.
[3] Jia WANG, Qingyan WANG, Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed