Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 282-287    https://doi.org/10.1007/s12200-011-0137-x
RESEARCH ARTICLE
Slow light in silicon microring resonators
Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU()
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper experimentally investigated slow light effect in cascaded silicon-on-insulator (SOI) microring resonators. Double channel and single channel side-coupled integrated spaced sequence of resonators (SCISSOR) devices were fabricated with electron beam lithography and dry etching technology. The delay performances of the SCISSOR devices were demonstrated using non-return-to-zero (NRZ) and return-to-zero (RZ) signals at different bit rates. Group delays and bandwidths of cascaded microrings are significantly enhanced compared with single microring.

Keywords slow light      optical buffer      group delay      delay line      microring resonator     
Corresponding Author(s): YU Jinzhong,Email:jzyu@semi.ac.cn   
Issue Date: 05 September 2011
 Cite this article:   
Zhiyong LI,Yuntao LI,Yude YU, et al. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0137-x
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/282
Fig.1  Schematic diagram of double channel SCISSOR
Fig.2  Response curves of (a) maximal group delay, bandwidth and (b) insertion loss when different resonance spacings are introduced
Fig.3  (a) SEM image of fabricated cascaded microring structure; (b) transmission spectra of 1 and 3-stage double channel SCISSOR devices
Fig.4  Group delays of 3-stage double channel SCISSOR device at different bit rates. (a) 1 Gbps; (b) 3 Gbps; (c) 5 Gbps; (d) 12.5 Gbps
Fig.5  (a) SEM image of 8-stage and (b) transmission spectra of 1, 2, 4 and 8-stage single channel SCISSOR devices
Fig.6  Group delays of 1, 2, 4 and 8-stage single channel SCISSOR devices at (a) 1 Gbps and (b) 3 Gbps RZ signals
1 Boyd R W.Applications of slow-light in telecommunications and optical switching. Presentation at Photonics West , 2006
2 Parra E, Lowell J R. Toward applications of slow light technology. Optics and Photonics News , 2007, 18(11): 40-45
doi: 10.1364/OPN.18.11.000040
3 Fisher M R, Chuang S L. Variable group delay and pulse reshaping of high bandwidth optical signals. IEEE Journal of Quantum Electronics , 2005, 41(6): 885-891
doi: 10.1109/JQE.2005.847547
4 Fleischhauer M, Lukin M. Quantum memory for photons: dark-state polaritons. Physical Review A , 2002, 65(2): 022314
doi: 10.1103/PhysRevA.65.022314
5 Harris S, Hau L. Nonlinear optics at low light levels. Physical Review Letters , 1999, 82(23): 4611-4614
doi: 10.1103/PhysRevLett.82.4611
6 Jemison W T, Yost T, Herczfeld P R. Acoustooptically controlled true time delays: experimental results. IEEE Microwave and Guided Wave Letters , 1996, 6(8): 283
7 Liu Z G, Zheng X P, Zhang H Y, Guo Y L, Zhou B K. X-band continuously variable true-time delay lines using air-guiding photonic bandgap fibers and a broadband light source. Optics Letters , 2006, 31(18): 2789-2791
doi: 10.1364/OL.31.002789 pmid:16936893
8 Zhang Y D, Wang N, Tian H, Wang H, Qiu W, Wang J F, Yuan P. A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency. Physics Letters A , 2008, 372(36): 5848-5852
doi: 10.1016/j.physleta.2008.07.018
9 Wang N, Zhang Y D, Wang H, Tian H, Qiu W, Wang J F, Yuan P. Precise relative rotation sensing using slow light. Chinese Physics B , 2010, 19(1): 014216
doi: 10.1088/1674-1056/19/1/014216
10 Heebner J E, Chak P, Pereira S, Sipe J E, Boyd R W. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, Optical Physics , 2004, 21(10): 1818-1832
doi: 10.1364/JOSAB.21.001818
11 Heebner J E, Grover R, Ibrahim T. Optical microresonators: Theory, fabrication, and Applications. Springer Verlag , 2008
12 Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics , 2007, 1(1): 65-71
doi: 10.1038/nphoton.2006.42
[1] Xin ZHANG, Jiawen JIAN, Han JIN, Peipeng XU. Nested microring resonator with a doubled free spectral range for sensing application[J]. Front. Optoelectron., 2017, 10(2): 144-150.
[2] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[3] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[4] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[5] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[6] Chuan WANG,Xiaoying LIU,Peng ZHOU,Peng LI,Jia DU. Dispersion of double-slot microring resonators in optical buffer[J]. Front. Optoelectron., 2016, 9(1): 106-111.
[7] Liyang LU, Jiayang WU, Tao WANG, Yikai SU. Compact all-optical differential-equation solver based on silicon microring resonator[J]. Front Optoelec, 2012, 5(1): 99-106.
[8] Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Front Optoelec Chin, 2011, 4(3): 264-269.
[9] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
[10] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
[11] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed