Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 308-314    https://doi.org/10.1007/s12200-011-0143-z
RESEARCH ARTICLE
Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer
Xiaofan ZHAO, Caiyun LOU(), Yanming FENG
Tsinghua National Laboratory for Information and Science Technology/State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(730 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, several applications in all-optical signal processing based on a semiconductor optical amplifier (SOA) and variable delayed interferometers (DIs) have been experimentally demonstrated. Wavelength converter based on a nonlinear polarization switch (NPS) and a DI is proposed and presented for the wavelength conversion of nonreturn-to-zero (NRZ) signals. An all-optical nonreturn-to-zero to return-to-zero (NRZ-to-RZ) format converter with tunable duty cycles is achieved by the DI with variable delays. The 40 Gb/s reconfigurable optical OR/NOR gate in a single SOA, followed a tunable optical bandpass filter (OBF) and a DI, optical 2R regeneration using an SOA-DI are investigated. It is found that this combinative realization of filters has been endowed with great flexibility and quality for 40 Gb/s optical logic and 2R regeneration.

Keywords all-optical signal processing      semiconductor optical amplifier      delayed interferometer      wavelength conversion      format converter      2R regeneration     
Corresponding Author(s): LOU Caiyun,Email:lcy6266@gmail.com   
Issue Date: 05 September 2011
 Cite this article:   
Xiaofan ZHAO,Caiyun LOU,Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0143-z
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/308
Fig.1  Experimental setup of WC for NRZ systems
Fig.2  (a) BER curves of back-to-back signal and wavelength converted signals using NPS and NPS-DI; (b) BER results of source and converted signals at the output of NPS and of NPS-DI after transmission
Fig.3  Experimental setup of NRZ-to-RZ format conversion
Fig.4  BER performance and eye diagrams of converted signal with different DI delays. (a) 10.2 ps; (b) 15 ps; (c) 19.7 ps
Fig.5  BER performance and eye diagrams of converted signal before and after transmission
Fig.6  Experimental setup of reconfigurable logic gate
Fig.7  Waveforms and eye diagrams for input data and logic outputs. (a) A; (b) B; (c) OR gate with DI only; (d) OR gate with pulse reshaping filter; (e) NOR gate
Fig.8  Eye diagrams. (a) Degraded signal; (b) after 2R; (c) BER performance
Fig.9  Eye diagrams. (a) and (d) Input degraded signals; (b) and (e) after 2R signals with DI only; (c) and (f) with blue-shifted optical filtering
1 Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for high-speed digital information processing. Science , 1999, 286(5444): 1523-1528
2 Houbavlis T, Zoiros K E, Kalyvas M, Theophilopoulos G, Bintjas C, Yiannopoulos K, Pleros N, Vlachos K, Avramopoulos H, Schares L, Occhi L, Guekos G, Taylor J R, Hansmann S, Miller W. All-optical signal processing and applications within the esprit project DO_ALL. Journal of Lightwave Technology , 2005, 23(2): 781-801
3 Dong J, Zhang X, Fu S, Xu J, Shum P, Huang D. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE Journal on Selected Topics in Quantum Electronics , 2008, 14(3): 770-778
doi: 10.1109/JSTQE.2008.916248
4 Huo L, Yang Y, Nan Y, Lou C, Gao Y. A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator. Journal of Lightwave Technology , 2006, 24(8): 3035-3044
5 Leuthold J, Moller L, Jaques J, Cabot S, Zhang L, Bernasconi P, Cappuzzo M, Gomez L, Laskowski E, Chen E, Wong-Foy A, Griffin A. 160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electronics Letters , 2004, 40(9): 554-555
6 Yu Y, Zhang X, Rosas-Fernández J B, Huang D, Penty R V, White I H. Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s. Optics Express , 2009, 17(5): 3964-3969
7 Nakamura S, Tajima K. Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect. Applied Physics Letters , 1997, 70(26): 3498-3500
8 Nielsen M L, M?rk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optical Society of America . B, Optical Physics , 2004, 21(9): 1606-1619
9 Liu Y, Tangdiongga E, Li Z, Zhang S, de Waardt H, Khoe G D, Dorren H J S.Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. Journal of Lightwave Technology , 2006, 24(1): 230-236
10 Ueno Y, Nakamura S, Tajima K, Kitamura S. 3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC). IEEE Photonics Technology Letters , 1998, 10(3): 346-348
11 Leuthold J, Joyner C H, Mikkelsen B, Raybon G, Pleumeekers J L, Miller B I, Dreyer K, Burrus C A. 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electronics Letters , 2000, 36(13): 1129-1130
12 Kim N Y, Tang X, Cartledge J C, Atieh A K. Design and performance of an all-optical wavelength converter based on a semiconductor optical amplifier and delay interferometer. Journal of Lightwave Technology , 2007, 25(12): 3730-3738
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[6] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[7] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[8] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[9] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[10] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[11] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[12] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[13] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[14] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[15] Duan LIU, Songnian FU, Ming TANG, Ping SHUM, Deming LIU. Rayleigh backscattering noise in single-fiber loopback duplex WDM-PON architecture[J]. Front Optoelec, 2012, 5(4): 435-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed