Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 277-281    https://doi.org/10.1007/s12200-011-0149-6
RESEARCH ARTICLE
Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing
Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG()
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 Download: PDF(233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel method is demonstrated to tunably compensate dispersion effect in phase modulated radio over fiber (RoF) links using an optical carrier Brillouin processing technique, which is based on stimulated Brillouin scattering (SBS) to control the phase shift of optical carrier in the modulated lightwave signal. Since this phase shift can be dynamically tuned, frequency response can be tunably improved. Both simulation and experimental results show that a uniform frequency response ranging from 1–12 GHz with a fluctuation of less than±1 dB can be obtained by an optimal phase shift on the optical carrier.

Keywords frequency response      dispersion effect      phase modulation      radio over fiber link      stimulated Brillouin scattering     
Corresponding Author(s): ZHANG Xianmin,Email:zhangxm@zju.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Shilie ZHENG,Sixuan GE,Hao CHI, et al. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0149-6
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/277
Fig.1  Simulated frequency response of 25 km phase modulated RoF links with and without optical carrier Brillouin process
Fig.2  Experimental setup for dispersion compensation
Fig.3  Experimental frequency response of 25 km phase modulated RoF links with and without optical carrier Brillouin process
Fig.4  Measured RF spectra at 2, 12 and 17.71 GHz with (above) and without (bottom) optical carrier Brillouin process when = 10.843 GHz, respectively
1 Wake D, Webster M, Wimpenny G, Beacham K, Crawford L. Radio over fiber for mobile communications. In: Proceedings of IEEE International Topical Meeting on Microwave Photonics 2004 . 2004, 157-160
2 Riaz M T, Nielsen R H, Pedersen J M, Prasad N, Madson O B. On radio over fiber for heterogeneous wireless networks. In: Proceedings of IFIP International Conference on Wireless and Optical Communication Networks (WOCN) 2009 . 2009, 1-4
3 Wiberg A, Perez-Millan P, Andres M V, Andrekson P A, Hedekvist P O. Fiber-optic 40-GHz mm-wave link with 2.5-Gb/s data transmission. IEEE Photonics Technology Letters , 2005, 17(9): 1938-1940
doi: 10.1109/LPT.2005.853035
4 Ji H C, Kim H, Chung Y C. Full duplex radio over fiber systems using phased modulated downlink and intensity modulated uplink. IEEE Photonics Technology Letters , 2009, 21(1): 9-11
doi: 10.1109/LPT.2008.2007969
5 Chraplyvy A R, Tkach R W, Buhl L L, Alferness R C. Phase modulation to amplitude modulation conversion of CW laser light in optical fibers. Electronics Letters , 1986, 22(8): 409-411
doi: 10.1049/el:19860279
6 Chen B, Zheng S L, Zhang X M, Jin X F, Chi H. Simultaneously realization PM-IM conversion and efficiency improvement of fiber optic links using FBG. Journal of Electromagnetic Waves and Applications , 2009, 23(2-3): 161-170
doi: 10.1163/156939309787604472
7 Yao X S. Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification. IEEE Photonics Technology Letters , 1998, 10(2): 264-266
doi: 10.1109/68.655379
8 Mckinney J D, Colladay K, Williams K J. Linearization of phase-modulated analog optical links employing interferometric demodulation. Journal of Lightwave Technology , 2009, 27(9): 1212-1220
doi: 10.1109/JLT.2008.929409
9 Loayssa A, Benito D, Garde M J. Optical carrier-suppression technique with a Brillouin-erbium fiber laser. Optics Letters , 2000, 25(4): 197-199
doi: 10.1364/OL.25.000197 pmid:18059827
10 Loayssa A, Benito D, Garde M J. Optical carrier Brillouin processing of microwave photonic signals. Optics Letters , 2000, 25(17): 1234-1236
doi: 10.1364/OL.25.001234 pmid:18066177
11 Loayssa A, Benito D, Garde M J. Applications of optical carrier Brillouin processing to microwave photonics. Optical Fiber Technology , 2002, 8(1): 24-42
doi: 10.1006/ofte.2002.0364
12 Shen Y C, Zhang X M, Chen K S. Optical single sideband modulation of 11 GHz RoF system using stimulated Brillouin scattering. IEEE Photonics Technology Letters , 2005, 17(6): 1277-1279
doi: 10.1109/LPT.2005.846491
13 Chen B, Zheng S L, Chi H, Zhang X M, Jin X F. An optical millimeter-wave generation technique based on phase modulation and Brillouin-assisted notch-filtering. IEEE Photonics Technology Letters , 2008, 20(24): 2057-2059
doi: 10.1109/LPT.2008.2006195
14 Loayssa A, Lahoz F J. Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single sideband modulation. IEEE Photonics Technology Letters , 2006, 18(1): 208-210
doi: 10.1109/LPT.2005.861307
[1] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[2] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[3] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
[4] Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed