Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 161-165    https://doi.org/10.1007/s12200-011-0153-x
RESEARCH ARTICLE
Synthesis and optoelectronic properties of silver-doped n-type CdS nanoribbons
Chunyan WU, Li WANG, Zihan ZHANG, Xiwei ZHANG, Qiang PENG, Jiajun CAI, Yongqiang YU, Huier GUO, Jiansheng JIE()
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
 Download: PDF(290 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sliver doped n-type CdS nanoribbons (NRs) were successfully synthesized by using Ag2S as the dopant via a thermal co-evaporation method. The CdS:Ag NRs have wurtzite single-crystal structure with growth direction of [110]. Significantly, the conductivity of the CdS NRs increased ~6 orders of magnitude by silver doping. Moreover, the Ag doped CdS NRs showed much enhanced photoconductivity compared with the undoped ones, which will greatly favor the application of CdS nanostructures in high-performance nano-optoelectronic devices.

Keywords CdS nanoribbons      silver doping      nanodevices      nano-field effect transistors      photoconductivity     
Corresponding Author(s): JIE Jiansheng,Email:jason.jsjie@gmail.com   
Issue Date: 05 June 2011
 Cite this article:   
Chunyan WU,Li WANG,Zihan ZHANG, et al. Synthesis and optoelectronic properties of silver-doped n-type CdS nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 161-165.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0153-x
https://academic.hep.com.cn/foe/EN/Y2011/V4/I2/161
Fig.1  XRD pattern of as-prepared CdS:Ag NRs
Fig.1  XRD pattern of as-prepared CdS:Ag NRs
Fig.2  Morphologies and structures of CdS:Ag NRs. (a) Typical FE-SEM image (inset shows EDS spectrum); (b) low-resolution TEM image (inset shows corresponding SAED pattern); (c) HRTEM image
Fig.2  Morphologies and structures of CdS:Ag NRs. (a) Typical FE-SEM image (inset shows EDS spectrum); (b) low-resolution TEM image (inset shows corresponding SAED pattern); (c) HRTEM image
Fig.3  Electrical and photoconductive properties of CdS:Ag NRs. (a) Typical - curves of CdS NRs (doped and intrinsic) in dark (inset shows photo of typical device based on single CdS:Ag NRs); (b) conductivity distribution of 20 CdS:Ag NRs in dark and upon light illumination; (c) time response of sample CA; (d) time response of sample C0 (LED white light from microscopy was turn on/off manually; was fixed at 5 V)
Fig.3  Electrical and photoconductive properties of CdS:Ag NRs. (a) Typical - curves of CdS NRs (doped and intrinsic) in dark (inset shows photo of typical device based on single CdS:Ag NRs); (b) conductivity distribution of 20 CdS:Ag NRs in dark and upon light illumination; (c) time response of sample CA; (d) time response of sample C0 (LED white light from microscopy was turn on/off manually; was fixed at 5 V)
Fig.4  Transport characteristics of back-gate nano-FET based on CdS:Ag NR. (a) Schematic illustration; (b) - curves measured at varied ( increases from 0 to 40 V in a step of 10 V); (c) - curve at =1 V
Fig.4  Transport characteristics of back-gate nano-FET based on CdS:Ag NR. (a) Schematic illustration; (b) - curves measured at varied ( increases from 0 to 40 V in a step of 10 V); (c) - curve at =1 V
1 Zheng G F, Lu W, Jin S, Lieber C M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Advanced Materials, 2004, 16(21): 1890–1893
doi: 10.1002/adma.200400472
2 Huang Y, Duan X F, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1(1): 142–147
3 Cui Y, Wei Q Q, Park H K, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science , 2001, 293(5533): 1289–1292
doi: 10.1126/science.1062711
4 Wang J F, Gudiksen M S, Duan X F, Cui Y, Lieber C M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science , 2001, 293(5534): 1455–1457
doi: 10.1126/science.1062340
5 Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science , 2001, 291(5510): 1947–1949
doi: 10.1126/science.1058120
6 Liu Y K, Zapien J A, Geng C Y, Shan Y Y, Lee C S, Lifshitz Y, Lee S T. High-quality CdS nanoribbons with lasing cavity. Applied Physicals Letters, 2004, 85(15): 3241–3243
doi: 10.1063/1.1805714
7 Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q, Lee S T. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Letters, 2006, 6(9): 1887–1892
doi: 10.1021/nl060867g
8 Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T. Wavelength-controlled lasing in ZnxCd1–xS single-crystal nanoribbons. Advanced Materials, 2005, 17(11): 1372–1377
doi: 10.1002/adma.200401606
9 Jie J S, Zhang W J, Bello I, Lee C S, Lee S T. One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today, 2010, 5(4): 313–336
doi: 10.1016/j.nantod.2010.06.009
10 Duan X F, Huang Y, Agarwal R, Lieber C M. Single-nanowire electrically driven lasers. Nature , 2003, 421(6920): 241–245
doi: 10.1038/nature01353
11 Wu D, Jiang Y, Wang L, Li S Y, Wu B, Lan X Z, Yu Y Q, Wu C Y, Wang Z B, Jie J S. High-performance CdS:P nanoribbon field-effect transistors constructed with high-k dielectric and top-gate geometry. Applied Physics Letters, 2010, 96(12): 123118
doi: 10.1063/1.3360206
12 Jie J S, Zhang W J, Jiang Y, Lee S T. Transport properties of single-crystal CdS nanoribbons. Applied Physics Letters, 2006, 89(22): 223117
doi: 10.1063/1.2398891
13 Gao T, Li Q H, Wang T H. CdS nanobelts as photoconductors. Applied Physics Letters, 2005, 86(17): 173105
doi: 10.1063/1.1915514
14 George P J, Sanchez A, Nair P K, Nair M T S. Doping of chemically deposited intrinsic CdS thin films to n type by thermal diffusion of indium. Applied Physics Letters, 1995, 66(26): 3624–3626
doi: 10.1063/1.113808
15 Kokaj J, Rakhshani A E. Photocurrent spectroscopy of solution-grown CdS films annealed in CdCl2 vapour. Journal of Physics D: Applied Physics, 2004, 37(14): 1970–1975
doi: 10.1088/0022-3727/37/14/012
16 Ristova M, Ristov M, Tosev P, Mitreski M. Silver doping of thin CdS films by an ion exchange process. Thin Solid Films, 1998, 315(1–2): 301–304
doi: 10.1016/S0040-6090(97)00476-8
17 McEvoy A J, Gratzel M. Sensitization in photochemistry and photovoltaics. Solar Energy Materials and Solar Cells, 1994, 32(3): 221–227
doi: 10.1016/0927-0248(94)90260-7
18 Wang C Z, E Y F, Fan L Z, Yang S H, Li Y L. CdS-Ag nanocomposite arrays: enhanced electro-chemiluminescence but quenched photoluminescence. Journal of Materials Chemistry , 2009, 19(23): 3841–3846
doi: 10.1039/b821213a
19 Liu S X, Qu Z P, Han X W, Sun C L. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 2004, 93–95: 877–884
doi: 10.1016/j.cattod.2004.06.097
20 Jia W L, Douglas E P, Guo F G, Sun W F. Optical limiting of semiconductor nanoparticles for nanosecond laser pulses. Applied Physics Letters, 2004, 85(26): 6326–6328
doi: 10.1063/1.1836871
21 He Z B, Jie J S, Zhang W J, Zhang W F, Luo L B, Fan X, Yuan G D, Bello I, Lee S T. Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small, 2009, 5(3): 345–350
doi: 10.1002/smll.200801006
22 Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D. ZnO nanowire UV photodetectors with high internal gain. Nano Letters, 2007, 7(4): 1003–1009
doi: 10.1021/nl070111x
[1] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[2] Li LIU, Ze ZHANG. Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 199-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed