Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 53-58    https://doi.org/10.1007/s12200-011-0154-9
RESEARCH ARTICLE
Electrochemical analysis of dye adsorption on aligned carbon nanofiber arrays coated with TiO2 nanoneedles for dye-sensitized solar cell
Jianwei LIU1,2(), Jun LI2()
1. Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA; 2. Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701, USA
 Download: PDF(290 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An electrochemical method has been developed to analyze dye absorption on the aligned carbon nanofiber arrays coated with TiO2 nanoneedles for dye-sensitized solar cell. The unique nanostructure with the roughness factor of 90.6 provides a large effective surface area for dye adsorption. The experimental results showed that the dye molecules cover 39.7% of the TiO2 surface area which influences the performance of dye-sensitized solar cell. The electrochemical method provides the information of the coverage of dye molecules which is a key issue to optimize solar cell performance.

Keywords electrochemical analysis      aligned carbon nanofibers      dye adsorption      solar cell     
Corresponding Author(s): LIU Jianwei,Email:liuw@ku.edu; LI Jun,Email:junli@ksu.edu   
Issue Date: 05 March 2011
 Cite this article:   
Jianwei LIU,Jun LI. Electrochemical analysis of dye adsorption on aligned carbon nanofiber arrays coated with TiO2 nanoneedles for dye-sensitized solar cell[J]. Front Optoelec Chin, 2011, 4(1): 53-58.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0154-9
https://academic.hep.com.cn/foe/EN/Y2011/V4/I1/53
Fig.1  Molecular structure of N719 dye and CV measurement in 0.1 mM Dye & 0.1 M LiClO4 acetonitrile solution taken with a scan rate of 50 mV/s using a platinum coil as a counter electrode, a Ag/AgCl(sat’d KCl) reference electrode, and a glassy carbon working electrode
Fig.1  Molecular structure of N719 dye and CV measurement in 0.1 mM Dye & 0.1 M LiClO4 acetonitrile solution taken with a scan rate of 50 mV/s using a platinum coil as a counter electrode, a Ag/AgCl(sat’d KCl) reference electrode, and a glassy carbon working electrode
Fig.2  (a) SEM image at 45° perspective view of a vertically aligned carbon nanofiber array; (b) vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles
Fig.2  (a) SEM image at 45° perspective view of a vertically aligned carbon nanofiber array; (b) vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles
Fig.3  (a) CV measurement in 0.1 M LiClO acetonitrile solution taken with a scan rate of 50 mV/s using a platinum coil as a counter electrode, a Ag/AgCl(sat’d KCl) reference electrode, the vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode; (b) dye N719 absorption on the surface of vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode
Fig.3  (a) CV measurement in 0.1 M LiClO acetonitrile solution taken with a scan rate of 50 mV/s using a platinum coil as a counter electrode, a Ag/AgCl(sat’d KCl) reference electrode, the vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode; (b) dye N719 absorption on the surface of vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode
Fig.4  (a) CV measurement in 0.1 M LiClO acetonitrile solution taken with a scan rate of 50 mV/s using a platinum coil as a counter electrode, a Ag/AgCl (sat’d KCl) reference electrode, the vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode (blue line), dye N719 absorption on the surface of vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode (red line); (b) CV measurement in 0.1 M LiClO acetonitrile solution taken with a scan rate of 50 mV/s, the vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode (blue line), the vertically aligned carbon nanofiber array (black line); a glassy carbon working electrode (red line)
Fig.4  (a) CV measurement in 0.1 M LiClO acetonitrile solution taken with a scan rate of 50 mV/s using a platinum coil as a counter electrode, a Ag/AgCl (sat’d KCl) reference electrode, the vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode (blue line), dye N719 absorption on the surface of vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode (red line); (b) CV measurement in 0.1 M LiClO acetonitrile solution taken with a scan rate of 50 mV/s, the vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as the working electrode (blue line), the vertically aligned carbon nanofiber array (black line); a glassy carbon working electrode (red line)
Fig.5  (a) Current-time plot of forward curve of a cyclic voltammogram with dye N719 adsorbed on surface of a vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as working electrode; (b) same plot after baseline fitting and subtraction from (a)
Fig.5  (a) Current-time plot of forward curve of a cyclic voltammogram with dye N719 adsorbed on surface of a vertically aligned carbon nanofiber array coated with anatase TiO nanoneedles as working electrode; (b) same plot after baseline fitting and subtraction from (a)
Fig.6  Carbon nanofiber coated with TiO nanoneedles
Fig.6  Carbon nanofiber coated with TiO nanoneedles
1 O’Regan B , Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters , 2006, 6(2): 215–218
doi: 10.1021/nl052099j pmid:16464037
3 Zhu K, Neale N R, Miedaner A, Frank A J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters , 2007, 7(1): 69–74
doi: 10.1021/nl062000o pmid:17212442
4 Baxter J B. Aydil E S. Nanowire-based dye-sensitized solar cells. Applied Physics Letters , 2005, 86 (5): 053114-1–053114-3
5 Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455–459
doi: 10.1038/nmat1387 pmid:15895100
6 Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters , 2007, 7(8): 2183–2187
doi: 10.1021/nl070160+ pmid:17602535
7 Maiolo J R 3rd, Kayes B M, Filler M A, Putnam M C, Kelzenberg M D, Atwater H A, Lewis N S. High aspect ratio silicon wire array photoelectrochemical cells. Journal of the American Chemical Society , 2007, 129(41): 12346–12347
doi: 10.1021/ja074897c pmid:17892292
8 Goodey A P, Eichfeld S M, Lew K K, Redwing J M, Mallouk T E. Silicon nanowire array photelectrochemical cells. Journal of the American Chemical Society , 2007, 129(41): 12344–12345
doi: 10.1021/ja073125d pmid:17892289
9 Liu J W, Li J, Sedhain A, Lin J Y, Jiang H X. Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. Journal of Physical Chemistry C , 2008, 112(44): 17127–17132
doi: 10.1021/jp8060653
10 Liu J W, Kuo Y T, Klabunde K J, Rochford C, Wu J, Li J. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Applied Materials & Interfaces , 2009, 1(8): 1645–1649
doi: 10.1021/am900316f pmid:20355778
11 Hirose F, Kuribayashi K, Shikaku M, Narita Y, Takahashi Y, Kimura Y, Niwano M. Adsorption density control of N719 on TiO2 electrodes for highly efficient dye-sensitized solar cells. Journal of the Electrochemical Society , 2009, 156(9): B987–B990
doi: 10.1149/1.3155425
12 Neale N R, Kopidakis N, van de Lagemaat J, Gratzel M, Frank A J. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells:βshielding versus band-edge movement. Journal of Physical Chemistry B , 2005, 109(49): 23183–23189
doi: 10.1021/jp0538666
13 Skoog D A, Holler F J, Grouch S R. Principles of Instrumental Analysis.6th Edition. Vancouver: Thomson Brooks/Cole, 2007
14 Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science , 1998, 282(5391): 1105–1107
doi: 10.1126/science.282.5391.1105 pmid:9804545
15 Cruden B A, Cassell A M, Ye Q, Meyyappan M. Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. Journal of Applied Physics , 2003, 94(6): 4070–4078
doi: 10.1063/1.1601293
16 Melechko A V, Merkulov V I, McKnight T E, Guillorn M A, Klein K L, Lowndes D H, Simpson M L. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. Journal of Applied Physics , 2005, 97(4): 041301
doi: 10.1063/1.1857591
17 Haque M S, Teo K B K, Rupensinghe N L, Ali S Z, Haneef I, Maeng S, Park J, Udrea F, Milne A I. On-chip deposition of carbon nanotubes using CMOS microhotplates. Nanotechnology , 2008, 19(2): 025607
doi: 10.1088/0957-4484/19/02/025607
18 Ranganathan S, Kuo T C, McCreery R L. Facile preparation of active glassy carbon electrodes with activated carbon and organic solvents. Analytical Chemistry , 1999, 71(16): 3574–3580
doi: 10.1021/ac981386n
19 Lindstr?m H, S?dergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S E. Li + ion insertion in TiO2 (Anatase). 2. voltammetry on nanoporous films. Journal of Physical Chemistry B , 1997, 101(39): 7717–7722
doi: 10.1021/jp970490q
20 Shklover V, Ovchinnikov Y E, Braginsky L S, Zakeeruddin S M, Gratzel M. Structure of organic/inorganic interface in assembled materials comprising molecular components. crystal structure of the sensitizer Bis[(4,4‘-carboxy-2,2‘-bipyridine)(thiocyanato)]ruthenium(II). Chemistry of Materials , 1998, 10(9): 2533–2541
doi: 10.1021/cm980303g
[1] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[2] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[3] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[4] Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
[5] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[6] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[7] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[8] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[9] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
[10] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[11] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
[12] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[13] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[14] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[15] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed